
Manual Pages() Manual Pages()

:

E1432 Host Interface Library

Function Reference

A.05.00

Written by Eric Backus

Copyright © 1994 - 1999 Hewlett-Packard Company, all rights reserved.

E1432 1

Manual Pages() Manual Pages()

2 E1432

E1432MON(1) E1432MON(1)

NAME
e1432mon − monitor for E1432 firmware messages

SYNOPSIS
e1432mon [-fuV] [-L laddr] [-t timeout] [-v verbosity]

DESCRIPTION
E1432monis a debugging program for monitoring messages fromthe E1432 firmware. As it executes, the
E1432 firmware prints certain status messages to an internal buffer. If thee1432monprogram is not run-
ning, these status messages are thrown away. Thee1432monprogram monitors for these status messages,
and prints them out. The amount of status information printed by the E1432 firmware is controlled by the
e1432_set_internal_debugprogram.

Note that runninge1432moncan slow down your measurement, since the process of printing these debug
messages takes time. It is quite possible fore1432monto cause errors, if the internal debug level in the
E1432 firmware is such that messages get printed during critical interrupt handlers.

Also, this program shouldnot be run during any measurement that uses the local bus. The reasons for this
are somewhat obscure. First of all, the local bus lines are positioned on the VXI P2 connector such that
activity on the VXI D32 data lines will cause glitches on the local bus lines. (This is a consequence of the
geometry of the lines on the VXI P2 connector and the shielding on the connector of the E1432 module - so
all varieties of VXI mainframe will show this problem.) Normally D32 is used to access the E1432 mod-
ule, but we disable D32 access when local bus measurements are running. However, this means that each
time a program wants to read a 32-bit register, two 16-bit reads must be done. If thee1432monprogram
executes between these two 16-bit reads, it will corrupt the value of the second 32-bit read, causing prob-
lems in the measurement you are trying to run.

Command Line Parameters:

-f Force e1432mon to tell the E1432 firmware that it’s attached to a tty. Useful when
running e1432mon from a script.

-L logical_addr Specifies the logical address of theE1432. The default value is 8.

-t timeout The e1432mon program will timeout and exit aftertimeoutseconds. A value of
zero (the default) disables the timeout. This timeout can be useful when running
e1432mon from a script.

-u Display usage message.

-v verbosity Specifies the verbosity level. The default value is 2. This is used only to debug
the e1432monprogram itself. Normally,e1432monprints only status messages
from the E1432 firmware, or an error message if the communication between
e1432monand the firmware is corrupted. When the verbosity level is set higher
than 2,e1432monalso prints other information as it executes.

-V Print version info.

RETURN TYPE
E1432monreturns 0 upon success, or returns non-zero if an error is detected.

SEE ALSO
e1432_set_internal_debug(3)

E1432 3

E1432SUPP(1) E1432SUPP(1)

NAME
e1432supp − print system information to aid in debugging E1432 problems e1432_sys_info − print system
information to aid in debugging E1432 problems

SYNOPSIS
e1432supp

DESCRIPTION
E1432suppande1432_sys_infoprint system information which may help when debugging E1432, E1433,
and E1434 problems. They print things like the revision date of the E1432 host interface libraries and the
VXI system configuration.

E1432_sys_infois exactly the same ase1432supp. The original name wase1432supp, but we decided that
e1432_sys_infois a better name for what it does.

E1432suppis really a shell script, so it is useful only on HP-UX systems. This script does not understand
any command-line options.

The last part of the script assumes that there is an E1432, E1433, or E1434 module at VXI logical address
8. If there is not, several error messages will be printed (which can be ignored).

RETURN TYPE
E1432suppreturns 0 if the final e1432mon bootup output is successful, returns non-zero otherwise.

4 E1432

HOSTDIAG(1) HOSTDIAG(1)

NAME
hostdiag − test and diagnose E1432 hardware

SYNOPSIS
hostdiag [-hPsuvV] [-f file] [-L laddr] [-S [cage:]slot] [-O list]

DESCRIPTION
Hostdiagis a program for testing and diagnosing E1432/3/4 hardware. It will find and diagnose most hard-
ware failures. By default, it tests the module at VXI logical address 8.

Note that when testing a module with a source, signals will be output during the course of testing. There-
fore, it may be wise to disconnect the source outputs when runningHostdiag.

Command Line Parameters:

-h Does a quick, half-hearted pass at testing by bypassing the tests which involve downloading code
to the module.

-f file Uses "file" as the source of code to download to the module instead of the default
/opt/e1432/lib/sema.bin .

-L logical_addr
Specifies the logical address of the module to be tested. The default value is 8. The -L option and
the -S option are mutually exclusive.

-O option_list
Tests the module against a model options list. For example -O "E1432,1DE,AYF" tests the module
as an 8 channel E1432A with the tachometer option. The model number and the options can be
found on the serial number plate(s) on the right side of the module. Without this option,hostdiag
only tests what it finds present. Hardware which has failed in such a way that it appears to be
absent will not be detected without this option.

-P Prints only a pass/fail message - no diagnostic printouts.

-s Additionally runs the "standard input/output" tests. Sources finish testing with 1 VPk, 1 KHz sine
on each output for manual verification of output functionality. Input testing (both E1432 and
E1433 input SCAs and the Tachometer input) assumes 1 VPk, 1 KHz sine input on each channel.
This allows testing of additional portions of the signal path which inaccessible from the internal
tests.

-S [cage:]slot
Test the module in the vxi cardcage,cage, vxi slot, slot. cagedefaults to 1 if not specified and
simply counts up from the root cardcage, which is 1 (ie. the second cardcage iscage = 2). Default
is to test the module at logical address 8. The -L option and the -S option are mutually exclusive.
The -S option is not available on Windows platforms.

-u Display usage message.

-v Specifies the verbose printing. Normally,hostdiagdoes not print anything unless an error is found.
With this option,hostdiagprints status messages as it operates. This option also enables additional
diagnostic information which is not of much use outside the factory.

-V Print version info.

It should be noted thathostdiagattempts to determine if portions of a module are broken. It is not guaran-
teed to find all hardware problems. It isnota performance test or system verification test.

RETURN TYPE
Hostdiagreturns 0 upon success, or returns non-zero if an error is detected.

E1432 5

HWBLKIO(1) HWBLKIO(1)

NAME
hwblkio − do low-level I/O with the E1432

SYNOPSIS
hwblkio [-@CcdfhlLmMpRstuvWxy]

DESCRIPTION
This program is used to perform low-level I/O operations with an E1432.

This program is an extended version of thehwblkio program distributed with the E1485 programmer’s
toolkit, and with the HP3565 programmer’s toolkit. Additional options have been added to allow it to work
well with the E1432 VXI module. The program still has the capability to communicate with an E1485 VXI
module or HP3565 system. However, those capabilities are not documented here.

This program reads or writes a block of data from the 96002 processor of anE1432 module. The data
transfer is done at a very low lev el, using interrupts, so that any firmware executing in the 96002 is com-
pletely unaware that the transfer is taking place. This makeshwblkioa good debugging tool.

Hwblkio will write a block to the E1432 if the-W command line argument is used. The data is first read
from the file specified by the-f option. If the size is not specified, as much of the input file will be output
as possible.

Hwblkio will read a block from the E1432 if the-R option is used. The data will then be written to the
standard output. The data is almost always binary, so it is best to redirect the output to a file or a program
like od(1).

If neither-R or -W are specified,hwblkiowill do nothing.

At any time, the behavior ofhwblkio is governed by parameters specified on the command line and by
parameters specified in the optional start-up file${HOME}/.hwiorc. Command line arguments take prece-
dence over parameters specified in the start-up file.

Command Line Parameters:

-@ block_addr This specifies the CPU address to access.block_addrmay either be specified in
decimal or in hex (hex must include a leading 0x).

-C Disable reading of start-up file. All required parameters must be specified as com-
mand line arguments.

-c Display all parameters. No I/O operations will take place. This is useful for
debugging.

-d interface_addr This options specifies the interface address. This parameter is usually something
like "vxi" when the channel type is VXI, or "hpib" when the channel type is
remote VXI.

-f file_name Specifies the input file, when writing data to the E1432 module.

-h hpib_addr Specifies the HP-IB address of theE1406when the channel type is remote VXI.

-l Access DSP L memory (L memory is a concatenation of X and Y memory). The
-@ option specifies the offset into L memory, and-s specifies the size in 64-bit
words.

-L logical_addr Specifies the logical address of theE1432.

-m mod_type This option specifies the type of module being accessed.mod_typemust be speci-
fied asE1432.

-M chan_type Specifies the HWIO channel type. The valid entries for this field are "vxi" and
"remote_vxi".

6 E1432

HWBLKIO(1) HWBLKIO(1)

-p Access DSP program memory. The-s option specifies the size in 32-bit words.

-R This enables the reading of a block.

-s npoint Specifies the size.npoint is normally in 32-bit words, but it is 64-bit words when
reading from L memory.npoint may be specified in decimal or in hex (hex must
include a leading 0x).

-t timeout This option specifies the HWIO timeout in microseconds.

-u Display usage message.

-v Turn verbose mode on. This is useful for debugging.

-W This enables the writing of a block.

-x Access DSP X RAM.-s specifies the size in 32-bit words.

-y Access DSP Y RAM.-s specifies the size in 32-bit words.

Start-up file:

The following are parameters that can be set in the start-up file.

interface_addr interface_addr
Use specified interface. There is no default for this parameter. See-d command
line option.

timeout timeout Timeout in microseconds. A timeout of zero, will never timeout. If not specified,
a timeout of 5 seconds will be used. See-t command line option.

hpib_hw_addr hpib_addr
HP-IB address ofE1406. This field is used with the HWIO channel type is remote
VXI. See-h command line option.

hwio_channel_typehwio_channel_type
The HWIO channel type. This may be specified as "vxi" or "remote_vxi". See
-M command line option.

module_typemodule_type
Specifies the type of module to be accessed. This is the same as the-m command
line option, and should be set toE1432.

vxi_logical_addr laddr
Logical address. See-L command line option.

All blank lines and lines beginning with the# character are ignored. Sincehwblkio is not the only program
to access the start-up file, parameters defined but not used by these programs will be ignored.

FILES
${HOME}/.hwiorc

EXAMPLES
An example of${HOME}/.hwiorc is as follows:

hwio_channel_type vxi
interface_addr vxi
vxi_logical_addr 8
This is used by hwinstall
exec_file /opt/e1432/lib/sema.bin
This shouldn’t be needed, but hwblkio is stupid
But then, hwzap is even stupider - it ignores this line
module_type e1432

E1432 7

HWBLKIO(1) HWBLKIO(1)

This is needed for hwzap
which_rom boot

To read and display 16 32-bit words from theE1432, at address 0x00001000 of X memory, type:

hwblkio -R -x -@0x1000 -s16 | xd | less

RETURN VALUE
Hwblkio returns 0 upon success and non-zero if an error is detected.

SEE ALSO
hwinstall(1), hwzap(1)

8 E1432

HWINSTALL(1) HWINSTALL(1)

NAME
hwinstall − install firmware into E1432 RAM

SYNOPSIS
hwinstall [-cCSuw] [-d interf_addr] [-L logical_addr] [-M hwio_chan_type] [-f op_sys_file] [-h
hpib_addr] [-t timeout] [-v vmode]

DESCRIPTION
Thehwinstallprogram is used to install firmware into RAM in an E1432 module.

This program is an extended version of thehwinstall program distributed with the E1485 programmer’s
toolkit, and with the HP3565 programmer’s toolkit. Additional options have been added to allow it to work
well with the E1432 VXI module. The program still has the capability to communicate with an E1485 VXI
module or HP3565 system. However, those capabilities are not documented here.

At any time, the behavior ofhwinstall is governed by parameters specified on the command line and by
parameters specified in the optional start-up file${HOME}/.hwiorc . Command line arguments take prece-
dence over parameters specified in the start-up file.

Command Line Parameters:

-c Display setup and exit. This is useful for diagnostics.

-C Disable the reading of the RC file. This is useful ifhwinstall is embedded in
another program and the caller wishes to setup the parameters and ignore the RC
file.

-d interf_addr Specifies the interface address. This parameter is usually something like "vxi"
when the channel type is VXI, or "hpib" when the channel type is remote VXI.

-f file Specifies the file containing the firmware image to install. Normally, this should
be set to/opt/e1432/lib/sema.bin .

-h hpib_addr Specifies the HP-IB address of theE1406when the channel type is remote VXI.

-L logical_addr Specifies the logical address of theE1432.

-M chan_type Specifies the HWIO channel type. The valid entries for this field are "vxi" and
"remote_vxi".

-S Do not do error checking after the firmware is initialized. When this option is
specified,hwinstall will return immediately without waiting for the firmware to
initialize itself, unless the-w option is also specified.

-t timeout Specifies a timeout for all HWIO operations in microseconds.

-u Display a usage message.

-w Wait for the firmware to initialize itself before exiting. The wait will time out after
approximately 10 seconds. By default,hwinstallwill wait for the firmware to ini-
tialize itself. This option is only useful if the-Soption has also been specified.

-v mode Specifies the verbose mode, or debug level. With a verbose mode of 0, no output
will occur. With a verbose mode of 1, only error messages will be displayed.
With a verbose mode of 5, much information is displayed. The default is 3.

Start-up file:

The following are parameters that can be set in the start-up file.

E1432 9

HWINSTALL(1) HWINSTALL(1)

interface_addr interface_addr
specifies the interface address. See-d command line option.

timeout timeout specifies the timeout in microseconds. See-t command line option.

hpib_hw_addr hpib_addr
specifies the HP-IB address of theE1406 command module. See-h command
line option.

exec_filefile specifies the file containing the firmware image to install. See-f command line
option.

hwio_channel_typehwio_channel_type
The HWIO channel type. This may be specified as "vxi" or "remote_vxi". See
-M command line option.

vxi_logical_addr laddr
Logical address. See-L command line option.

All blank lines and lines beginning with the# character are ignored. Sincehwinstall is not the only pro-
gram to access the start-up file, parameters defined but not used byhwinstallare ignored.

Thehpib_addrandinterface_addrparameters must be specified as command-line options or in the start-up
file--they do not have default values. Thetimeoutparameter is not required, the default is 5 seconds. The
file parameter should be set to/opt/e1432/lib/sema.bin . Note that the default is
/usr/e1485/lib/spos , which is not useful for the E1432 module.

The default behavior when installing the firmware is to wait for the firmware to initialize itself. The-S
command-line option may be used to disable waiting for the firmware to initialize. In this event,hwinstall
will not wait for the firmware to initialize itself unless the-w command-line option is specified. This is all
a little convoluted, but this is how hwinstall has always worked with other products.

RETURN VALUE
Hwinstall returns 0 upon success, or non-zero if an error is detected.

FILES
${HOME}/.hwiorc
/opt/e1432/lib/sema.bin

EXAMPLES
An example of the${HOME}/.hwiorc file is:

hwio_channel_type vxi
interface_addr vxi
vxi_logical_addr 8
This is used by hwinstall
exec_file /opt/e1432/lib/sema.bin
This shouldn’t be needed, but hwblkio is stupid
But then, hwzap is even stupider - it ignores this line
module_type e1432
This is needed for hwzap
which_rom boot

SEE ALSO
hwblkio(1), hwzap(1)

10 E1432

HWZAP(1) HWZAP(1)

NAME
hwzap − program E1432 flash ROM

SYNOPSIS
hwzap [options]

DESCRIPTION
Hwzapis used to program the E1432 flash ROM. The flash ROM contains boot code for the 96002 proces-
sor on the substrate board, and calibration constants used during system calibration.

This program is an extended version of thehwzapprogram distributed with the E1485 programmer’s
toolkit, and with the HP3565 programmer’s toolkit. Additional options have been added to allow it to work
well with the E1432 VXI module. The program still has the capability to communicate with an E1485 VXI
module or HP3565 system. However, those capabilities are not documented here.

A copy of the E1432 96002 boot code (a binary image) can be found in
/opt/e1432/lib/core1P.bin . This boot code is small; its main purpose is to set things up for
downloading the real firmware.

The behavior ofhwzapis governed by parameters specified on the command line and by parameters speci-
fied in the optional start-up file${HOME}/.hwiorc . Command line arguments take precedence over
parameters specified in the start-up file.

Command Line Parameters:

-c Display setup and exit. This is useful for diagnostics.

-C Disable the reading of the RC file. This is useful ifhwzapis embedded in another
program and the caller wishes to set the parameters and ignore the RC file.

-d interface_addr Specifies the interface address. This parameter is usually something like "vxi"
when the channel type is VXI, or "hpib" when the channel type is remote VXI.

-f dfile Specifies the file containing the binary image to program.

-h hpib_addr Specifies the HP-IB address of theE1406when the channel type is remote VXI.

-L logical_addr Specifies the logical address of theE1432.

-m mod_type Specifies the type of VXI module. Should be specified as "e1432".

-M chan_type Specifies the HWIO channel type. The valid entries for this field are "vxi" and
"remote_vxi".

-R which_rom Specifies which ROM to program. This field must be specified as "boot".

-t timeout Specifies a timeout for all I/O operations in microseconds.

-u Display usage message.

-v vmode Specifies the verbose mode, or debug level. With a verbose mode of 0, no output
will occur. With a verbose mode of 1, only error messages will be displayed.
With a verbose mode of 5, much information is displayed. The default is 3.

Start-up file:

The following are parameters that can be set in the start-up file.

interface_addr interface_addr
specifies the interface address. See-d command line option.

timeout timeout specifies the timeout in microseconds. See-t command line option.

E1432 11

HWZAP(1) HWZAP(1)

hpib_hw_addr hpib_addr
specifies the HP-IB address of theE1406 command module. See-h command
line option.

hwio_channel_typehwio_channel_type
The HWIO channel type. This may be specified as "vxi" or "remote_vxi". See
-M command line option.

vxi_logical_addr laddr
Logical address. See-L command line option.

downloadable_filedfile
Specifies the file containing the binary image to zap into the ROM. See-f com-
mand line option.

which_rom which_rom
Specifies the ROM to program. See-R command line option.

rom_image_filefile Specifies the file which contains the image to program. See-f command line
option.

All blank lines and lines beginning with the# character are ignored. Sincehwzapis not the only program
to access the start-up file, parameters defined but not used byhwzapare ignored.

EXAMPLE
An example of zapping the flash rom with the default ROM image is:

hwzap -f /opt/e1432/lib/core1P.bin -R boot -m e1432

RETURN TYPE
Hwzapreturns 0 upon success, or returns non-zero if an error is detected.

FILES
${HOME}/.hwiorc
/opt/e1432/lib/core1P.bin

SEE ALSO
hwinstall(1)

12 E1432

PROGOPT(1) PROGOPT(1)

NAME
progopt − install options in E1432 hardware

SYNOPSIS
progopt [-RuVZ] [-A optStr] [-D optStr] [-L laddr]

DESCRIPTION
Progopt is a program that allows a user to install some E1432 hardware options, as well as read the hard-
ware serial number.

Command Line Parameters:

-A optStr
Add option string <optStr> to option list. Typically this is a hexadecimal codeword for a particular
option.

-D optStr
Delete option string <optStr> from option list. This can be used to delete an incorrectly entered
option or codeword.

-L laddr
Talk to logical address <laddr>, default 8.

-R Read the option list from hardware. Codewords will appear literally, not as the option that they
encode.

-S Read the serial string from hardware. This serial string is typically needed to generate the code-
word for a particular option for a particular module.

-u Display usage message.

-V Print version information.

-Z Zero (delete) all options from the option list in hardware. This should not be done unless the infor-
mation is available to reprogram the correct option string(s).

RETURN TYPE
Progoptreturns 0 upon success, or returns non-zero if an error is detected.

E1432 13

PTMAN(1) PTMAN(1)

NAME
ptman − on-line manual reader

SYNOPSIS
ptman [-u] [-l] [-r] [-b base_dir] [-p pager] title ...

DESCRIPTION
Ptmanis used to access the on-lineE1432Host Interface Library manual.

This program is an extended version of theptman program distributed with the E1485 programmer’s
toolkit, and with the HP3565 programmer’s toolkit. Additional options have been added to allow it to work
well with the E1432 VXI module. The program still has the capability to provide E1485 or HP3565 man-
ual pages.

The simplest usage ofptman is to display the manual page of anyE1432 function or program when the
name of the function or program is known. For example, the command:

ptman ptman

will perform the following:

1. Search for the on-line manual data base files, located under the product base directories.Ptman
searchs under the "/opt/e14*", "/usr/e14*" and "/usr/hp3565" directories. This allows theptmanpro-
gram to be used to display manual pages from the E1432, E1431, E1430, E1485, and HP3565 prod-
ucts.

2. In the located "mandb" files, ptman searches for a reference to the functionptman.

3. Format the manual page via nroff, using the -man macro package.

4. If the output of ptman is being sent to a tty device (i.e. the screen) the formatted man page is sent to
the standard input of the pager more(1). If the output of ptman is being sent to a pipe, the formatted
manual page is sent directly to the standard output.

A second typical use ofptmanis to display a manual page when the name of the function or program is not
quite known. Suppose you want to know the name of theE1432function that will read data from the mod-
ule. All you remember is that it starts with programs that start with the string ’e1432_read’:

ptman -l e1432_read

From the output of this command, the user can pick out the desired function, then read the man page via the
following:

ptman e1432_read_float32_data

The operation ofptmanmay be modified via environment variable and command line parameters. Com-
mand line parameters have presidence over environment variables.

The following command line parameters are supported:

-b base_dir Usebase_diras the product base directory. The default is "/opt/e14*", "/usr/e14*" and
"/usr/hp3565" directories. Ptman checks under the "lib" subdirectory for the "mandb"
file.

-l List file names only. This option is used in the second example above.

-p pager Usepageras the pager program. The default pager is "more". Pager may also be speci-
fied using thePA GER environment variable.

14 E1432

PTMAN(1) PTMAN(1)

-r Displays the revision of the manual data base.

-u Display usage message.

the following environment variables are supported:

PTMAN_BASEDIR
Sets the product base directory. See above for default

PA GER Sets the pager to use. See above for default

NOTES
Currently,ptmanmay not terminate after scrolling through the man pages. If this occurs, hit thebreak key
to exitptman.

RETURN VALUE
Ptmanreturns 0 upon success, or non-zero if an error is detected.

FILES
/opt/e14*/lib/mandb
/usr/bin/col
/usr/bin/more
/usr/bin/nroff
/usr/bin/tbl
/usr/e14*/lib/mandb
/usr/hp3565/lib/mandb
/usr/lib/macros/an

SEE ALSO
man(1)

E1432 15

SRCUTIL(1) SRCUTIL(1)

NAME
srcutil − program E1432 source board flash ROM

SYNOPSIS
srcutil [options]

DESCRIPTION
Srcutil is used to get hardware and firmware revision information, and is used to program the E1432 source
board flash ROM. The revision information is displayed on stdout. The flash ROM contains boot code, and
signal generation code for the 56002 processor on the source board.

A copy of the E1432 source board rom image (a binary image) can be found in
/opt/e1432/arbsrc/srcrom.bin .

The behavior ofsrcutil is governed by optional parameters specified on the command line.

Optional Command Line Parameters:

-f dfileSpecifies the file containing the binary image to program.

-L logical_addrSpecifies the logical address of theE1432.

-P Specifies that the flash ROM is to be programmed.

-u Display usage message.

EXAMPLE
An example of getting source revision information is:

/opt/e1432/arbsrc/srcutil

An example of programming the source flash ROM is:

/opt/e1432/arbsrc/srcutil -P

RETURN TYPE
Srcutil returns 0 upon success, or returns non-zero if an error is detected.

FILES
/opt/e1432/arbsrc/srcrom.bin

SEE ALSO
e1432_src_prog_romimage(3)

16 E1432

SRCUTIL(1) SRCUTIL(1)

E1432 17

E1432_ARM_MEASURE(3) E1432_ARM_MEASURE(3)

NAME
e1432_arm_measure − Manually arm, move E1432s from IDLE to ARM state

SYNOPSIS
SHORTSIZ16 e1432_arm_measure(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 wait_after)

DESCRIPTION
e1432_arm_measuremoves all modules in the group from theIDLE state to theARM state.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

This function performs a "manual arm", and does not need to be called when the group is set to "auto arm".
This function is called for the first time aftere1432_init_measure, and then, when in block mode, after each
data block has been read out of the module. See the "Measurement setup and control" section earlier in this
manual, for a detailed description of the measurement states.

This function waits for all modules to be in theIDLE state, before proceeding further, and it will return an
error if this state is not reached after a limited time. After the call toe1432_arm_measurecompletes suc-
cessfully, the measurement will proceed further, as the trigger event occurs (seee1432_trigger_measure).

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. If the measurement involves more than one module, it is mandatory that agroup
ID be used, rather than achannel ID.

wait_afterdetermines whether this function will wait for the module to actually move beyond theARM
state. If zero, the function does not wait; if non-zero, the function waits.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_init_measure, e1432_trigger_measure, e1432_arm_measure_master_finish

18 E1432

E1432_ARM_MEASURE_MASTER_FINISH(3) E1432_ARM_MEASURE_MASTER_FINISH(3)

NAME
e1432_arm_measure_master_finish − Master side measurement manual arm
e1432_arm_measure_master_setup − Master side measurement manual arm
e1432_arm_measure_slave_finish − Slave side measurement manual arm

SYNOPSIS
SHORTSIZ16 e1432_arm_measure_master_finish(E1432ID hw, SHORTSIZ16 ID)
SHORTSIZ16 e1432_arm_measure_master_setup(E1432ID hw, SHORTSIZ16 ID)
SHORTSIZ16 e1432_arm_measure_slave_finish(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
These functions arenot normally needed by the typical application. They are provided for use only when a
measurement must use multiple VXI mainframes. The typical single-mainframe application should simply
usee1432_arm_measureinstead.

These functions are used in conjunction withe1432_arm_measureto manually arm a multi-mainframe
measurement.

Instead of using these functions, it is possible to usee1432_set_mmf_delayinstead. However,
e1432_set_mmf_delayis not as reliable.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is the ID of a group of channels that was obtained with a call toe1432_create_channel_group.

e1432_arm_measure_master_setupis used to set up modules in the master mainframe of a multi-
mainframe system, before doing the manual arm. TheID parameter to this function should be a channel
that is in the master mainframe, or a group containing only channels in the master mainframe.

e1432_arm_measure_slave_finishis used to verify that modules in the slave mainframes of a multi-
mainframe system have all successfully armed. This should be called after doing the manual arm. TheID
parameter to this function should be a group containing the channels from the slave mainframes.

e1432_arm_measure_master_finishis used to clean up the multi-mainframe manual arm process. This
should be done at the end of the manual arm process. TheID parameter to this function should be the same
as theID that was originally passed toe1432_arm_measure_master_setup.

The following sequence should be used to reliably manual arm all modules in a multi-mainframe setup:

e1432_arm_measure_master_setup(hw, master_id);
e1432_arm_measure(hw, global_id, 0);
e1432_arm_measure_slave_finish(hw, slave_id);
e1432_arm_measure_master_finish(hw, master_id);

In the above code, "master_id" is the ID of a channel or group in the master mainframe; "global_id" is the
ID of a group containing all channels in the measurement (the same ID that was originally given to
e1432_init_measure); and "slave_id" is the ID of a group containing the channels in the slave mainframes.
Note that a real application should check the return values of these functions for errors.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 19

E1432_ARM_MEASURE_MASTER_FINISH(3) E1432_ARM_MEASURE_MASTER_FINISH(3)

SEE ALSO
e1432_init_measure, e1432_init_measure_master_finish, e1432_arm_measure, e1432_trigger_measure,
e1432_set_mmf_delay, e1432_multimain

20 E1432

E1432_ASSIGN_CHANNEL_NUMBERS(3) E1432_ASSIGN_CHANNEL_NUMBERS(3)

NAME
e1432_assign_channel_numbers − Preset and assign IDs to E1432s
e1432_assign_channels − Assign IDs to E1432s

SYNOPSIS
SHORTSIZ16 e1432_assign_channel_numbers(SHORTSIZ16 nmod,

SHORTSIZ16 *la_list,
E1432ID *hw)

SHORTSIZ16 e1432_assign_channels(SHORTSIZ16 nmod,
SHORTSIZ16 *la_list,
E1432ID *hw,
int preset)

DESCRIPTION
One ofe1432_assign_channel_numbersor e1432_assign_channelsmust be called exactly once, following
a call toe1432_init_io_driver, in order to declare to the library the logical addresses of the E1432 modules
that will be used.

These two functions are identical, except thate1432_assign_channelshas an additional parameter to spec-
ify whether the modules should all be preset. A normal user typically would use
e1432_assign_channel_numbers, which is exactly equivalent to:
e1432_assign_channels(nmod, la_list, hw, 1)

nmod is the count of logical addresses passed in the second parameter,la_list. This number should be
between0 and255. A value of zero means that the function should free all memory allocated by a previous
call toe1432_assign_channel_numbersor e1432_assign_channels, and do nothing else.

la_list is the pointer to the list of logical addresses to be used by the library. Logical addresses have values
ranging between1 and 255. All modules in thela_list are preset to their power-up state, as with
e1432_preset. There is no requirement that thela_list array be in numerically increasing order. The chan-
nel numbers will start at one in the first logical address and increase in value in the same order that the logi-
cal addresses are found in the array.

The function returns inhw a hardware ID which is used when calling most other E1432 Host Interface
library functions.

presetspecifies whether the preset the modules. If non-zero, the modules are preset before the function
returns.

This function checks the existence of an E1432 module at each of the logical addresses given inla_list, and
allocates logical channel identifiers for each channel in all of the E1432s. Input channels, source channels,
and tach/trigger channels are kept logically separated. Channel numbers for each type of channel are num-
bered starting from one, so there will be input channels 1 through M, source channels 1 through N, and
tach/trigger channels 1 through P, where M is the number of input channels, N is the number of source
channels, and P is the number of tach/trigger channels.

As an example, suppose two logical addresses 100 and 101 are passed to the function, and the logical
address 100 has two 4-channel input SCAs and an Option AYF 2-channel tachometer input, while logical
address 101 has three 4-channel input SCAs and an Option 1D4 single-channel source board. In this case,
input channel IDs 1 through 8 are assigned to the eight input channels at logical address 100, while input
channel IDs 9 through 20 are assigned to the twelve input channels at logical address 101. Tach/trigger
channel IDs number 1 and 2 are assigned to the two tach/trigger channels at logical address 100, and
Source channel ID number 1 is assigned to the source channel at logical address 101.

This function dynamically allocates memory usingmalloc(3), in order to store the internal structures kept
for each channel and each module.

E1432 21

E1432_ASSIGN_CHANNEL_NUMBERS(3) E1432_ASSIGN_CHANNEL_NUMBERS(3)

When programming for multiple mainframe environments, where two or more mainframes are connected
by an MXI interface, there are some limitations and special cases that need to be accounted for. The TTL-
TRG lines that are used by the E1432 to sync multiple module measurements are unidirectional through the
MXI interface, so this restricts which modules can drive the TTLTRG lines. The e1432_read_xxx_data()
function should use a group ID, not just channel IDs. See the manual pagee1432_multimain(5)for more
info.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_create_channel_group, e1432_delete_all_chan_groups, e1432_init_io_driver, e1432_preset,
e1432_e1431_diff(5), e1432_id(5), e1432_multimain(5)

22 E1432

E1432_AUTO_RANGE(3) E1432_AUTO_RANGE(3)

NAME
e1432_auto_range − Automatically set the input range

SYNOPSIS
SHORTSIZ16 e1432_auto_range(E1432ID hw, SHORTSIZ16 ID, FLOATSIZ64 meas_time)

DESCRIPTION
e1432_auto_rangeattempts to set the input range of a single channel or group of channels. It tries to pick a
range which puts the input signal near full scale but which does not overload the input.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

meas_timespecifies how long to monitor the input channels, in seconds, before deciding whether the range
is OK, or needs to be increased, or decreased. If the range needs to be changed on any channel, then the
channels are again monitored formeas_timeseconds and checked to see if the range needs to be changed or
not. This is done in a loop until all input channels reach a range at which there is neither an overload nor an
under-range.

As a special case, if themeas_timeis specified as exactly zero, the auto range will estimate an appropriate
measurement time. The estimate uses the formula: meas_time=blocksize*0.1/span.

The algorithm normally will change the input ranges up or down in order to reach the "best" range. How-
ev er,e1432_set_auto_range_modecan be used to modify this algorithm. If the auto range mode is set to
E1432_AUTO_RANGE_MODE_UPfor a given channel, then the auto range will only increase the input
range (or leave it the same) but will not decrease the range setting for that channel. Similarly, if the auto
range mode is set toE1432_AUTO_RANGE_MODE_DOWN for a given channel, then the auto range
will only decrease the input range (or leave it the same) but will not increase the range setting.

If a channel is at the maximum range setting and the input is still overloaded, the channel is left at the maxi-
mum range and no error is generated. If a channel is at the minimum range setting and the input is still
under-ranged, the channel is left at the minimum range and no error is generated.

If this function is called when a measurement is running, it will change the ranges of the channels "on the
fly", leaving the measurement running with the input channels at the new ranges.

If this function is called when no measurement is running, it will internally run a measurement, do the auto-
range, and then stop the internal measurement. The internal measurement is mostly like any other measure-
ment, but it temporarily turns off VME interrupts from the module, disables the Local Bus, and deactivates
any sources, so that the auto-range will not have any unexpected effects outside of the module.

Due to DSP limitations, auto-range doesNOT work on an E1433 if the current clock frequency (as set by
e1432_set_clock_freq) is greater than 128 kHz. If an auto-range is attempted when the clock frequency is
greater than 128 kHz, an error is returned.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 23

E1432_AUTO_RANGE(3) E1432_AUTO_RANGE(3)

SEE ALSO
e1432_set_auto_range_mode, e1432_set_clock_freq

24 E1432

E1432_AUTO_ZERO(3) E1432_AUTO_ZERO(3)

NAME
e1432_auto_zero − Null out DC offset

SYNOPSIS
SHORTSIZ16 e1432_auto_zero(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
e1432_auto_zeroattempts to null out the DC offset of a single channel or group of channels.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

For input channels, an auto-zero involves grounding the input amplifier and measuring the resulting offset
voltage. The measured offset is saved and used to correct future measurements. For the E1432 and E1433
input SCAs, an auto-zero also involves measuring the amplitude accuracy, and a gain constant is saved and
used to correct future measurements.

For source channels, an auto-zero involves disconnecting the external connector, programming the source
to produce zero volts, and then measuring the actual voltage produced. The measured offset is saved and
used to correct future measurements.

For tach channels, an auto-zero is not done.

Doing an auto-zero (for either source or input channels) will abort any currently-running measurement. In
general, it is better to auto-zero a group of channels all at once rather than auto-zero the individual channels
separately, because the group auto-zero can do most of the work in parallel and will therefore not take as
long.

When firmware is initially loaded into a module withe1432_install, all input channels are auto-zeroed,but
source channels are not.

In general, the best auto-zero results will be obtained if all parameters for the input or source channel are
set up prior to doing the auto-zero. For example, if the measurement will use a clock frequency of 65536
Hz, it is best to auto-zero the channels after setting the clock frequency to 65536 Hz. Typically, if an auto-
zero is going to be done, it is done after setting up all parameters but before starting a measurement with
e1432_init_measure.

Doing an auto-zero after changing clock frequency is important for input channels in the E1432 module,
because the gain of the E1432’s ADC varies slightly with clock frequency. This is less of a problem for the
input channels in an E1433 module.

In a multi-module measurement, it is best to make sure all modules (or at least all source modules) have
stopped running a measurement (usinge1432_reset_measure) before doing an auto-zero. Otherwise, it is
possible that an auto-zero in one module could cause an active source in a different module to produce an
output signal.

For the E1434 or option 1D4 source channels additional steps are required before auto-zero if the filter fre-
quency of the anti-alias digital filter has been changed. These steps are necessary to get the correct filter
path set up in the source before doing the auto-zero, so that the auto-zero works correctly.

1. Set the source output mode to grounded. This prevents any glitching at the source BNC, but it causes
the source to drive the module’s CALOUT line.

E1432 25

E1432_AUTO_ZERO(3) E1432_AUTO_ZERO(3)

2. Set the source arm mode to manual, so the source never really starts, so all we drive onto the
CALOUT line is DC.

3. Set the module to not drive CALOUT onto the VXI sumbus, so we can’t accidentally mess up anyone
else’s use of the VXI sumbus.

4. Start and stop a measurement. This gets the correct signal path loaded into the source, without
glitching the output.

5. Do the auto-zero.

6. Restore the sumbus setting, the source output mode, and the arm mode.

You could do this procedure for all auto-zeros, even when the filter frequency does not change. It takes a
little longer, though.

EXAMPLE
/* This code is required when auto-zeroing a source channel, if the

source filter frequency changes. Otherwise, all that is
necessary is to call e1432_auto_zero(hw, group). */

/* Set manual arm, output grounded, sumbus off */
CHECK(e1432_set_arm_mode(hw, group, E1432_MANUAL_ARM));
CHECK(e1432_set_source_output(hw, group, E1432_SOURCE_OUTPUT_GROUNDED));
CHECK(e1432_set_sumbus(hw, group, E1432_SUMBUS_OFF));
/* Start and stop measurement, then auto-zero */
CHECK(e1432_init_measure(hw, group));
CHECK(e1432_reset_measure(hw, group));
CHECK(e1432_auto_zero(hw, group));
/* Restore desired sumbus, output, and arm settings */
CHECK(e1432_set_sumbus(hw, group, E1432_SUMBUS_OFF));
CHECK(e1432_set_source_output(hw, group, E1432_SOURCE_OUTPUT_NORMAL));
CHECK(e1432_set_arm_mode(hw, group, E1432_AUTO_ARM));

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

26 E1432

E1432_BLOCK_AVAILABLE(3) E1432_BLOCK_AVAILABLE(3)

NAME
e1432_block_available − Return status of data FIFO

SYNOPSIS
SHORTSIZ16 e1432_block_available(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
e1432_block_availablereturns one of three status conditions:

- A positive number if a block of data is available to be read. Use
e1432_read_raw_data, e1432_read_float32_data, or
e1432_read_float64_datato read the data.

- Zero if a block of data is not available.

- A (negative) error number if an error occurred.

When the E1432 is set to block mode, usinge1432_set_data_modewith E1432_BLOCK_MODE, the
module stops acquiring data after one block of data for each active channel has accumulated in the FIFO.
The module does not acquire more data until the block has been read out of the FIFO.

When the E1432 is set to overlap block mode, usinge1432_set_data_modewith
E1432_DAT A_MODE_OVERLAP_BLOCK , the module acquires data continuously (as with continuous
mode, below) but will stop momentarily if the FIFO fills up, so there will never be a FIFO overflow.

When the E1432 is set to continuous mode, usinge1432_set_data_mode with
E1432_CONTINUOUS_MODE, the module continues to acquire data until the E1432 is re-initialized
with e1432_init_measureor the FIFO overflows because data is not read out fast enough.

If the FIFO overflows in continuous mode, data acquisition stops. Data remaining in the FIFO is valid and
can be read.e1432_block_availablereturns 1 as long as at least a block of data remains in the FIFO. Calls
to e1432_block_availablewhen the FIFO is empty because of data overflow will return the error
ERR1432_FIFO_OVERRUN.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

The usage ofe1432_block_availablevaries depending upon whether a group ID or channel a ID is used. If
a group ID is used,e1432_block_availablewill return positive when every channel in the group has a block
ready for reading.

When given a group ID, thee1432_block_availablefunction internally does some group-related operations
to ensure that the group remains synchronized properly. For this reason,it is almost always better to use
a group ID than a channel ID for this function.

If a channel ID is used,e1432_block_availablewill return positive when that channel has a block that is
ready to be read.

The concept of having a block of data ready makes sense only for input channels, not for tach or source
channels, soe1432_block_availablenormally ignores any tach or source channels that are present in the
groupID. Howev er, there is one exception to this rule. In a multi-module RPM-arm or order tracking mea-
surement, if one module has no active input channels, but does have active tach channels, the tach channels
must be in the group ID passed toe1432_block_available. The reason that that this is necessary is to
ensure that the RPM arms and the tach data stay synchronized between all of the modules.

E1432 27

E1432_BLOCK_AVAILABLE(3) E1432_BLOCK_AVAILABLE(3)

EXAMPLE
/* wait for data, handle errors */
while(!(error = e1432_block_available(groupID)));
if (error < 0)

call_error_handler_routine();
else

e1432_read_raw_data(groupID, buffer, size, &actualCount);

RESET VALUE
Not applicable.

RETURN VALUE
Return positive if successful, 0 if no data available, a (negative) error number if error. The two most likely
errors returned will be ERR1432_FIFO_OVERRUN and ERR1432_TACH_BUFFER_OVERFLOW.

SEE ALSO
e1432_read_raw_data, e1432_read_float32_data, e1432_read_float64_data, e1432_get_raw_tachs,
e1432_send_tachs

28 E1432

E1432_CACHED_PARM_UPDATE(3) E1432_CACHED_PARM_UPDATE(3)

NAME
e1432_cached_parm_update − Update parameters cached by the host library

SYNOPSIS
SHORTSIZ16 e1432_cached_parm_update(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
When reading data from an E1432 module usinge1432_read_xxx_data, the host library must know the val-
ues of several E1432 parameters, such as blocksize. Rather than query the E1432 module each time the
data transfer is done, the host library saves (caches) the value of these parameters internally, and uses the
saved value when doing the data transfer. This reduces the overhead of the data transfer functions. This
function,e1432_cached_parm_update, is what actually saves the parameter values in the host library inter-
nal data structures.

e1432_cached_parm_updateis normally called internally bye1432_init_measure, and is therefore not nor-
mally needed by the end user. We provide it for use in special cases where it may be useful.

An example of when this might be useful is if one host computer is responsible for setting up E1432 mea-
surement parameters and starting a measurement, but a second computer is used to actually transfer the
E1432 data. The second computer must usee1432_cached_parm_updateafter the first computer sets up
the measurement, to update the internally cached parameters on the second computer, so that the data trans-
fer will work properly.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. Typically a group ID is used.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_init_measure, e1432_read_float32_data, e1432_read_float64_data, e1432_read_raw_data

E1432 29

E1432_CHANNEL_GROUP_ADD(3) E1432_CHANNEL_GROUP_ADD(3)

NAME
e1432_channel_group_add − Add a channel to a channel group
e1432_channel_group_remove − Remove a channel from a channel group

SYNOPSIS
SHORTSIZ16 e1432_channel_group_add(E1432ID hw, SHORTSIZ16 group_id,

SHORTSIZ16 chan_id)
SHORTSIZ16 e1432_channel_group_remove(E1432ID hw, SHORTSIZ16 group_id,

SHORTSIZ16 chan_id)

DESCRIPTION
e1432_channel_group_addadds a channel to an existing channel group. If the channel is already a mem-
ber of the channel group, this function does nothing.

e1432_channel_group_removeremoves a channel from an existing channel group. If the channel is not
currently a member of the channel group, this function does nothing.

There is nothing wrong with deleting all channels from a channel group using
e1432_channel_group_remove. It is valid to have a group with no channels in it.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

group_idis the ID of a group of channels that was obtained with a call toe1432_create_channel_group.

chan_idis the ID of a single channel.

When adding channels to or deleting channels from a channel group, these functions attempt to preserve the
current "trigger master" setting if there is one. However, withe1432_channel_group_removeit is possible
that the trigger master module is no longer in the group. In this case, a new trigger master is picked arbi-
trarily.

RESET VALUE
Not applicable.

RETURN VALUE
e1432_channel_group_addande1432_channel_group_removereturn 0 if successful, or a (negative) error
number otherwise.

SEE ALSO
e1432_assign_channel_numbers, e1432_create_channel_group, e1432_delete_channel_group,
e1432_set_trigger_master

30 E1432

E1432_CHECK_OVERLOADS(3) E1432_CHECK_OVERLOADS(3)

NAME
e1432_check_overloads − Check for overload and under-range

SYNOPSIS
SHORTSIZ16 e1432_check_overloads(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *any, SHORTSIZ16 *comm,
SHORTSIZ16 *diff, SHORTSIZ16 *half)

DESCRIPTION
e1432_check_overloadsqueries the overload/under-range registers and returns status information using
four pointers. The first pointer locationany will be non-zero if any overload occured (theany parameter
does not get set for half-range condition, only overload). The other three pointer locations will be filled
with arrays of TRUE/FALSE flags, one per active channel in the original channel list used in
e1432_create_channel_group(). Any of the four pointers can be NULL if that information is not wanted.

This function is meant to be used for real-time updating of the current overload status of channels. It
returns the "recent" overload status of the channels. "Recent" is defined to be one blocksize worth of data
points. Unlike the E1431 Host Interface library, calling this function does not clear the overload status.
Also unlike the E1431 function, this function does not have separate information about ADC overloads ver-
sus other kinds of differential overloads. Also unlike the E1431 function, this function provides informa-
tion about whether a channel is under-ranged.

To instead get the overload status for a particular block of data, usee1432_set_append_status, and get the
overload status from the trailer data.

If this function is given a group ID, it returns overload status only for active channels in that group. The
arrays pointed to bycomm, diff, andhalf must be large enough to hold information for all of these active
channels.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is the ID of a group or single channel.

any is a pointer to SHORTSIZ16 that is set by any overload (i.e. if any element ofcommor diff is set). any
can be NULL if the information is not desired.

commis a pointer to SHORTSIZ16 that is set by a common mode input overload.commcan be NULL if
the information is not desired.

diff is a pointer to SHORTSIZ16 that is set by a differential mode input overload.diff can be NULL if the
information is not desired.

half is a pointer to SHORTSIZ16 that is set when the signal is not under-ranged.half can be NULL if the
information is not desired.

EXAMPLE
SHORTSIZ16 any, error;
SHORTSIZ16 comm[5];
SHORTSIZ16 diff[5];
SHORTSIZ16 half[5];

/* assuming groupID is a group with 5 active channels */
error = e1432_check_overloads(hw, groupID, &any, comm, diff, half);

E1432 31

E1432_CHECK_OVERLOADS(3) E1432_CHECK_OVERLOADS(3)

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_read_raw_data, e1432_set_append_status

32 E1432

E1432_CHECK_SRC_SHUTDOWN(3) E1432_CHECK_SRC_SHUTDOWN(3)

NAME
e1432_check_src_shutdown − Check for source shutdown

SYNOPSIS
SHORTSIZ16 e1432_check_src_shutdown(E1432ID hw, SHORTSIZ16 chanID)

SHORTSIZ16 e1432_check_src_overload(E1432ID hw, SHORTSIZ16 chanID)

SHORTSIZ16 e1432_check_src_overread(E1432ID hw, SHORTSIZ16 chanID)

SHORTSIZ16 e1432_check_src_underrun(E1432ID hw, SHORTSIZ16 chanID)

DESCRIPTION
e1432_check_src_shutdownreturns a 1 if the queried source is shutdown. It returns a 0 if not shutdown.

e1432_check_src_overloadreturns a 1 if the queried source has been overdriven by an external signal. It
returns a 0 if not.

e1432_check_src_overrreadreturns a 1 if the queried source has run out of arbdata. It returns a 0 if not.

e1432_check_src_underrunreturns a 1 if the queried source has run out of real-time (results in the output
signal being turned off). It returns a 0 if not.

These checks are used to check the cause of an E1432_IRQ_SRC_STATUS interrupt.

For e1432_check_src_overread, the cause is cleared by its associated check function. Another interrupt
should not occur for the same cause until that cause has been cleared. This also allows the causes to be
latched in case polling is desired instead of an interrupt.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

chanID is the ID of a group or single channel.

RESET VALUE
Not applicable.

RETURN VALUE
Return 1 if the check is true, a 0 if the check is false, a (negative) error number otherwise.

SEE ALSO
e1432_check_src_arbrdy

E1432 33

E1432_CREATE_CHANNEL_GROUP(3) E1432_CREATE_CHANNEL_GROUP(3)

NAME
e1432_create_channel_group − Create a group of E1432 channels

SYNOPSIS
SHORTSIZ16 e1432_create_channel_group(E1432ID hw, SHORTSIZ16 nchan,

SHORTSIZ16 *chan_list)

DESCRIPTION
e1432_create_channel_groupcreates and initializes a channel group. A channel group allows you to issue
commands to several E1432 channels at once, simplifying system setup. You can overlap channel groups.
The state of an individual E1432 channel that is in more than one channel group, is determined by the most
recent operation performed on any group to which this channel belongs.

As a side effect, this function makes all input and tach channels in the channel group active, and all source
channels in the channel group inactive. Unlike the E1431 library, this function does not inactivate other
channels within the modules that the channels are in. Also unlike the E1431 library, this function does not
preset the channels in the new group.

An additional side effect of this function is that it resets the "auto_group_meas" parameter for each module
that has a channel in the channel list. Most applications use the default value of "auto_group_meas", so
most applications will not care about this. Seee1432_set_auto_group_measfor details about this parame-
ter.

This function dynamically allocates memory to keep track of the groups which have been created. This
memory can be freed bye1432_delete_channel_groupande1432_delete_all_chan_groups.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

nchanis the count of channels passed in the third parameter,chan_list. This number should be between0
and the maximum number of channels available.

chan_listis the pointer to the list of logical channels identifiers of the group to be created. This list must be
in ascending order and contain no repeats. Ifchanis zero, then this parameter is ignored and can be set to
NULL.

To supply the ID of an input channel, the input channel number is given as an argument to the
E1432_INPUT_CHAN() macro. For backwards compatibility with the E1431, the macro currently does
nothing. To supply the ID of a source channel, the source channel number is given as an argument to the
E1432_SOURCE_CHAN()macro. To supply the ID of a tach/trigger channel, the tach/trigger channel
number is given as an argument to theE1432_TACH_CHAN() macro.

It is legal to hav e a mixture of input, source, and tach channels in one group. It is legal to create a group
that has no channels in it.

As an example, to create a group consisting of the first three input channels and the eighth and ninth input
channels, the code would like something like this:

SHORTSIZ16 chan_list[5];
SHORTSIZ16 input_group;

chan_list[0] = E1432_INPUT_CHAN(1);
chan_list[1] = E1432_INPUT_CHAN(2);
chan_list[2] = E1432_INPUT_CHAN(3);
chan_list[3] = E1432_INPUT_CHAN(8);
chan_list[4] = E1432_INPUT_CHAN(9);

34 E1432

E1432_CREATE_CHANNEL_GROUP(3) E1432_CREATE_CHANNEL_GROUP(3)

input_group = e1432_create_channel_group(hw, 5, chan_list);

To create a group consisting of the first two source channels, the code would look something like this:

SHORTSIZ16 chan_list[2];
SHORTSIZ16 source_group;

chan_list[0] = E1432_SOURCE_CHAN(1);
chan_list[1] = E1432_SOURCE_CHAN(2);
source_group = e1432_create_channel_group(hw, 2, chan_list);

RESET VALUE
Not applicable.

RETURN VALUE
If successful, this function returns theID of the group that was created, which is then used to reference the
channel group in most other functions in this library. Because a group ID is always negative, if an error
occurs a positive error number is returned by this function. This is the only function that returns a positive
error number.

SEE ALSO
e1432_assign_channel_numbers, e1432_channel_group_add, e1432_channel_group_remove,
e1432_delete_channel_group, e1432_set_auto_group_meas, e1432_id(5)

E1432 35

E1432_DEBUG_LEVEL(3) E1432_DEBUG_LEVEL(3)

NAME
e1432_debug_level − Enable/disable register write printout

SYNOPSIS
void e1432_debug_level(SHORTSIZ16 level)

DESCRIPTION
e1432_debug_levelcontrols printing of low-level register accesses to E1432 modules. When enabled, the
debug message includes the register number, and the new contents being read or written. This function, in
conjunction with theE1432 Hardware Reference Manualallows detailed examination of the sequence of
register writes as well as the contents of the E1432 registers at the bit level.

level is should be set to0 for no debug printing,1 to print all register writes, or2 to print register reads and
writes.

RESET VALUE
After a reset,level is set to0, printing of register writes is disabled.

RETURN VALUE
This function does not return a value.

SEE ALSO
e1432_trace_level, e1432_set_internal_debug, e1432_print_errors

36 E1432

E1432_DELETE_CHANNEL_GROUP(3) E1432_DELETE_CHANNEL_GROUP(3)

NAME
e1432_delete_channel_group − Delete a group of E1432 channels
e1432_delete_all_chan_groups − Delete all groups of E1432 channels

SYNOPSIS
SHORTSIZ16 e1432_delete_channel_group(E1432ID hw, SHORTSIZ16 ID)
SHORTSIZ16 e1432_delete_all_chan_groups(E1432ID hw)

DESCRIPTION
e1432_delete_channel_groupdeletes a group previously made usinge1432_create_channel_group. After
this call, the deleted group ID should not be used anymore.

e1432_delete_all_chan_groupsdeletes all channel groups.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is the ID of a group of channels that was obtained with a call toe1432_create_channel_group.

RESET VALUE
Not applicable.

RETURN VALUE
e1432_delete_all_chan_groupsalways returns 0.e1432_delete_channel_groupreturns 0 if successful, a
(negative) error number otherwise.

SEE ALSO
e1432_assign_channel_numbers, e1432_create_channel_group, e1432_channel_group_add,
e1432_channel_group_remove

E1432 37

E1432_DISPLAY_STATE(3) E1432_DISPLAY_STATE(3)

NAME
e1432_display_state − Dump E1432 module states in easy-to-read format

SYNOPSIS
void e1432_display_state(E1432ID hw)

DESCRIPTION
e1432_display_stateuses printf to dump the current state of each module that was in the logical address list
when e1432_assign_channelswas called. The "current state" is just the state that the E1432 interface
library stores - most of the parameters of the E1432 module are stored in the module itself and are not dis-
played by this function.

This function also prints information on the groups that have been created, and which channels belong to
each group.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

RESET VALUE
Not applicable.

RETURN VALUE
None

SEE ALSO
e1432_assign_channels

38 E1432

E1432_DSP_EXEC_QUERY(3) E1432_DSP_EXEC_QUERY(3)

---- NOT FOR GENERAL USE ----

NAME
e1432_dsp_exec_query − Send commands, receive responses from SCA DSP(s)

SYNOPSIS
SHORTSIZ16 e1432_dsp_exec_query(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 exec_cmd,
LONGSIZ32 exec_data_size, LONGSIZ32 *exec_data,
LONGSIZ32 query_data_size, LONGSIZ32 *query_data)

DESCRIPTION
e1432_dsp_exec_querysends commands and optional data to an individual SCA DSP or a group of SCA
DSPs and optionally reads the response(s).

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained by a call toe1432_create_channel_group, or
the ID of a single channel.

exec_cmdis the host interrupt vector that will be sent in conjunction with the command data.

exec_data_sizeis the size of the command data block to be sent. If it is zero orexec_datais NULL, no
command data will be sent.

exec_datais a pointer to the 32 bit command data.

query_data_sizeis the number of words of response expected from each DSP after the command executes.
If it is zero orquery_datais NULL, no response will be expected.

query_datais a pointer to the 32 bit an array which will receive the response data. It must be long enough
to include the responses from all DSPs inID, that is its size in 32 bit words must be at least
query_data_size* number of DSPs addressed.

For E1433 input channels,exec_datais first optionally sent across the host data port. Thenexec_cmdis
sent to the the host interrupt vector port. Execution then waits for theCIP (Command In Progress) bit to be
cleared from the DSP. Then, thequery_datais optionally read through the host data port. This is repeated
for each channel inID, since there is one DSP per channel.

This function is not currently implemented for any other SCA DSPs.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise._NO_ID, if ID is not a valid channel or group
ID. _BUS_ERROR, if any of the underlying register accesses fail._BUFFER_TOO_SMALL , if the
buffer requirements of exec_data and query_data exceeds the fixed internal buffer.
_SCA_FIRMWARE_ERROR and_SCA_HOSTPORT_FAIL are symptomatic of the command failing
on the DSP or the wrong amount of response data being expected.

SEE ALSO
e1432_sca_dsp_download

E1432 39

E1432_FINISH_MEASURE(3) E1432_FINISH_MEASURE(3)

NAME
e1432_finish_measure − Clean up the VXI bus after a measurement is done

SYNOPSIS
SHORTSIZ16 e1432_finish_measure(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
e1432_finish_measureis used to clean up after the end of a measurement. It is similar to
e1432_reset_measurein that it stops all inputs and sources, but in addition it also turns off any signals that
modules in the group may be sending onto the VXI bus.

e1432_finish_measuredoes not disable the channels in the group. Depending on what your application will
be doing next, it is sometimes a good idea to also calle1432_set_active(hw, ID,E1432_CHANNEL_OFF)
in addition toe1432_finish_measure, to disable the channels in the group.

This function sets the clock source for each module in the group to internal (seee1432_set_clock_source);
stops each module from driving the clock or sync/trigger line onto the VXI backplane (see
e1432_set_multi_syncand e1432_set_clock_master); sets the local bus mode to pipe mode (see
e1432_set_lbus_mode and e1432_reset_lbus); and disables interrupt generation (see
e1432_set_interrupt_maskande1432_set_interrupt_priority).

This call stops a previous group measurement from interfering with a current group measurement if the two
groups happen to share TTLTRG lines for module synchronization.

Seee1432_init_measurefor a description of multi-module measurements.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is the ID of a group of channels that was obtained with a call toe1432_create_channel_group.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_init_measure, e1432_reset_measure

40 E1432

E1432_GET_CURRENT_DAT A(3) E1432_GET_CURRENT_DAT A(3)

NAME
e1432_get_current_data − Get current measurement data block

SYNOPSIS
SHORTSIZ16 e1432_get_current_data(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 data_type, SHORTSIZ16 data_size,
void **data, LONGSIZ32 *actual_count)

DESCRIPTION
e1432_get_current_datagets the most recent measurement data blocks for the channel(s) selected byID.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It specifies which channel(s) to get current measurement data for.

data_type specifies which type of measurement data is requested. Currently, only
E1432_OCTAVE_DAT A is supported.

data_size specifies the type of numerical format that is requested. Currently, only
E1432_DAT A_SIZE_FLOAT32 andE1432_DAT A_SIZE_FLOAT64 are supported.

data points to an array of pointers to the memory blocks which are to receive the measurement data. All
channels specified byID must have a pointer in the array pointed to bydata. The memory blocks pointed
to by those pointers must have enough space to receive the measurement data. The channel ordering is the
same as that provided in the e1432_create_channel_group function call used to createID, with no gaps for
unused channels.

For data_typeE1432_OCTAVE_DAT A, with linear averaging, as set bye1432_set_octave_avg_modeor
Octave hold modes other thanE1432_OCTAVE_HOLD_MODE_OFF, as set by
e1432_set_octave_hold_mode, data may be either the instantaneous Octave value or the averaged/hold
mode result, depending on which is most recently available.

The actual number of data points read into each block is returned in the memory location pointed to by
actual_count.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_avg_mode, e1432_set_octave_hold_mode,
e1432_set_octave_start_freq, e1432_set_octave_stop_freq, e1432_set_octave_int_time,
e1432_set_octave_time_const, e1432_set_octave_time_step, e1432_octave_ctl,
e1432_get_octave_blocksize

E1432 41

E1432_GET_CURRENT_RPM(3) E1432_GET_CURRENT_RPM(3)

NAME
e1432_get_current_rpm − Get the current RPM of a tachometer channel
e1432_get_data_rpm − Get the arming RPM of last data block
e1432_get_next_arm_rpm − Get the arming RPM for the next data block

SYNOPSIS
SHORTSIZ16 e1432_get_current_rpm(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *rpm)
SHORTSIZ16 e1432_get_data_rpm(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *rpm)
SHORTSIZ16 e1432_get_next_arm_rpm(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *rpm)

DESCRIPTION
e1432_get_current_rpmreturns the current RPM of an active tachometer channel into the variable pointed
to by rpm.

e1432_get_data_rpmreturns the trigger RPM for the last data block into the variable pointed to byrpm.
This information is also available in the data block trailer if the trailer has been enabled using
e1432_set_append_status. This is only meaningful in one of the RPM arming modes set by
e1432_set_arm_mode.

e1432_get_next_arm_rpmreturns the arming RPM for the next data block that will be acquired. The mea-
surement will arm when this RPM value is reached.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is a channel ID of a specific tachometer channel.

rpm is a pointer to a 32-bit float which will be filled in with the requested RPM value.

RESET VALUE
After a reset,rpm is set to 0.0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_arm_mode, e1432_set_append_status

42 E1432

E1432_GET_CURRENT_VALUE(3) E1432_GET_CURRENT_VALUE(3)

NAME
e1432_get_current_value − Get current Peak value, RMS value, or FIFO available count

SYNOPSIS
SHORTSIZ16 e1432_get_current_value(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 value_type,
FLOATSIZ32 *value)

DESCRIPTION
e1432_get_current_valuegets the Peak or RMS current value for of a single channel or group of channels
ID.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

Thevalue_typeshould be one of:

E1432_CURRENT_VAL_PEAK,
indicating that the current Peak value is to be returned.

E1432_CURRENT_VAL_RMS,
indicating that the current RMS value is to be returned.

E1432_CURRENT_VAL_FIFO_AVAIL ,
indicating that the current amount of data in the FIFO is to be returned.

value is a pointer to a single floating point variable in the case of a single channelID, or a pointer to an
array of floating point variables large enough to accept one current value result for each of the channels in
channel groupID.

Whenvalue is E1432_CURRENT_VAL_PEAK or E1432_CURRENT_VAL_RMS, if a channel is not
enabled or if the requested value computation has not been enabled withe1432_set_peak_modeor
e1432_set_rms_mode, 0 will be returned in the correspondingvalue.

The functions e1432_set_peak_decay_time, e1432_set_rms_avg_time, and e1432_set_rms_decay_time
control the time responses of the peak and RMS current values.

The weighting, selected bye1432_set_weighting, is applied to the peak and RMS current values.

The E1432_CURRENT_VAL_PEAK or E1432_CURRENT_VAL_RMS values are currently available
only with the E1433.E1432_CURRENT_VAL_FIFO_AVAIL works for both the E1432 and E1433.

RESET VALUE
After a reset, Peak and RMS value computation is not enabled, and the FIFO is not running, so
e1432_get_current_valuewill only return zero valued results.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_peak_mode, e1432_set_rms_mode, e1432_set_peak_decay_time, e1432_set_rms_avg_time,
e1432_set_rms_decay_time, e1432_set_weighting.

E1432 43

E1432_GET_DECIMATION(3) E1432_GET_DECIMATION(3)

NAME
e1432_get_decimation − Get decimation factor

SYNOPSIS
SHORTSIZ16 e1432_get_decimation(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *dec)

DESCRIPTION
e1432_get_decimationgets the current decimation rate of a channel. This is the ratio between the "sam-
ple0" sample clock frequency, and the effective sample rate of the data being acquired by the channel.

The sample clock frequency is the clock frequency that is connected to one of the VXI TTLTRG lines, if
needed to synchronize several E1432 modules. This clock frequency is normally, but not always, the fun-
damental rate at which data is collected from the ADCs on the SCAs. The effective sample rate is deter-
mined by the span specified withe1432_set_span, and by the SCAs present in the hardware.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

decis a pointer to 32-bit int, and will be filled with the current decimation factor.

RESET VALUE
The reset value ofdecis one.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_span, e1432_get_clock_freq

44 E1432

E1432_GET_ERROR_STRING(3) E1432_GET_ERROR_STRING(3)

NAME
e1432_get_error_string − return pointer to last error string
e1432_fill_error_string − copy last error string to buffer

SYNOPSIS
char *e1432_get_error_string(void)
SHORTSIZ16 e1432_fill_error_string(char *string, SHORTSIZ16 max,

SHORTSIZ16 *actual);

DESCRIPTION
e1432_get_error_stringreturns a pointer to a string holding a one line description of the last error condi-
tion.

e1432_fill_error_stringreturns the same information ase1432_get_error_string, but it copies it to a
passed-in buffer, instead of returning a pointer to the string. This works better when calling from Visual
Basic.

string is a pointer to a buffer allocated by the caller.

len specifies the size of thestring buffer. The function will not write more than this many characters,
including the trailing null, to thestring.

actualpoints to a value that will be filled in bye1432_fill_error_string. The value will be the length of the
string written, not including the trailing null.

EXAMPLE
SHORTSIZ16 error;

error = e1432_set_span(ID, span);
if (error)

(void) printf("error: %d %s0, error, e1432_get_error_string());

RESET VALUE
Not applicable.

RETURN VALUE
e1432_get_error_stringreturns a pointer to the error string.e1432_fill_error_stringreturns zero.

SEE ALSO
e1432_print_errors

E1432 45

E1432_GET_FWREV(3) E1432_GET_FWREV(3)

NAME
e1432_get_fwrev − Get revision of "sema.bin" file

SYNOPSIS
SHORTSIZ16 e1432_get_fwrev(char *path, LONGSIZ32 *fwrev)

DESCRIPTION
e1432_get_fwrevreturns the firmware revision for the file specified bypath. This file should be a
sema.bin file that could be installed in an E1432/E1433/E1434 module.

path is the path to thesema.bin file, including thesema.bin filename. The typical value to use for
pathwould be/opt/e1432/lib/sema.bin .

fwrev should point to a 32-bit integer. This integer will get filled with the firmware revision for the
sema.bin file. The revision is of the form "19970416". It is a decimal integer containing a four-digit
year followed by a two-digit month followed by a two digit day.

If this sema.bin file is installed in an E1432/E1433/E1434 module usinge1432_install, and then if
e1432_get_hwconfigis used to get information about the module, thefw_revfield in thee1432_hwconfig
structure will be equal to thefwrevreturned by this function.

The typical user will probably not need to use this function. Its purpose it to provide a way to compare a
sema.bin file in the host computer with the firmware that is executing in a module, to see which is newer.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_hwconfig, e1432_install

46 E1432

E1432_GET_GROUP_INFO(3) E1432_GET_GROUP_INFO(3)

NAME
e1432_get_group_info − Get information about a group

SYNOPSIS
SHORTSIZ16 e1432_get_group_info(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 item, SHORTSIZ16 *answer,
SHORTSIZ16 size)

DESCRIPTION
hpe1432_getGroupInfois used to return selected information about a channel group that has been previ-
ously created using hpe1432_createChannelGroup(). The information is returned in an array that must be
allocated by the caller ofhpe1432_getGroupInfo.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

item is used to select which data is returned. See the list below.

answeris a pointer to a single answer or the start of an array of answers. Be sure to allocate enough space
for the returing array of data.HPE1432_GROUP_INFO_NUM_CHANNELS can be used to determine
how large an array is needed.

sizeis the maximum number of ellements allowed for the returning data.

The choices for item are;

HPE1432_GROUP_INFO_NUM_MODULES Number of modules

HPE1432_GROUP_INFO_LIST_MODULES List of modules

HPE1432_GROUP_INFO_NUM_CHANNELS Number of channels

HPE1432_GROUP_INFO_LIST_CHANNELS List of channels

HPE1432_GROUP_INFO_NUM_INPUTS Number of inputs

HPE1432_GROUP_INFO_LIST_INPUTS List of inputs

HPE1432_GROUP_INFO_NUM_SOURCES Number of sources

HPE1432_GROUP_INFO_LIST_SOURCES List of sources

HPE1432_GROUP_INFO_NUM_TACHSNumber of tachs

HPE1432_GROUP_INFO_LIST_TACHSList of tachs

RESET VALUE
Not applicable

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_create_channel_group

E1432 47

E1432_GET_GROUP_INFO(3) E1432_GET_GROUP_INFO(3)

48 E1432

E1432_GET_HWCONFIG(3) E1432_GET_HWCONFIG(3)

NAME
e1432_get_hwconfig − Get module configuration

SYNOPSIS
SHORTSIZ16 e1432_get_hwconfig(SHORTSIZ16 modCount,

SHORTSIZ16 *logAddrList,
struct e1432_hwconfig *hwconfig)

DESCRIPTION
e1432_get_hwconfigreturns information about the modules found at each logical address given. This func-
tion will return an error if any of the modules do not yet have firmware installed (firmware is installed by
thee1432_installfunction). This means that thee1432_get_hwconfigfunction is a convenient way to test if
e1432_installneeds to be done. See thee1432_installmanual page for example code of how to do this.

modCountspecifies how many different modules to examine.

logAddrList is an array of VXI logical addresses. This array must be as long asmodCount. Each logical
address in this array will be examined.

hwconfigis an array of pointers to structures of type struct e1432_hwconfig. This array must be as long as
modCount, and the pointers must point to already allocated structures. Each structure is filled in with infor-
mation about the corresponding logical address from thelogAddrListarray. If any logical address does not
contain an E1432 module, this function returns an error.

Thee1432_hwconfigstructure contains the following fields:

man_id, the VXI Manufacturer ID of the module. The Manufacturer ID for Hewlett-Packard is 0xfff.

model_code, the VXI Model Code of the module. The model code for E1432 is 0x201. The model code
for E1433 is 0x202. The model code for E1434 is 0x203.

hw_rev, the hardware revision. The value is a four-decimal-digit date code.

bootrom_rev, the boot ROM revision. This is a number which represents the date of the boot ROM code.
The number is of the form 19950721 (unless the boot ROM is very old, in which case the value is some
number that doesn’t look anything like a date code).

fw_rev, the firmware revision. This is a number which represents the date the firmware was created. The
number is of the form 19950721.

sca_id, an array of IDs for the SCAs that are present. The value will be one of:

SCA ID Values

Define (in e1432.h) Meaning

E1432_SCA_ID_NONE No SCA in this slot
E1432_SCA_ID_TACH Option AYF Tachometer
E1432_SCA_ID_CLARINET Option 1D4 Single-channel Source
E1432_SCA_ID_VIBRATO E1432 51.2 kHz Input
E1432_SCA_ID_SONAT A E1433 196 kHz Input
E1432_SCA_ID_CLARION E1434 Source

sca_rev, an array of revision codes for the SCAs that are present. The interpretation of this value depends
upon the ID of the SCA. For aE1432_SCA_ID_VIBRATO, the value is a number between 0 and 5
(higher is more recent). For aE1432_SCA_ID_SONAT A, the value is a number between 0 and 4 (higher
is more recent). For aE1432_SCA_ID_TACH, a value of 0 means that the board does not have the ability

E1432 49

E1432_GET_HWCONFIG(3) E1432_GET_HWCONFIG(3)

to do system triggering or monitor the analog tach input; a value of 1 means that the board can system trig-
ger but can’t monitor the analog tach input, and a value of 2 means that the board can system trigger and
can monitor the analog tach input. All shipped tach boards should have a rev of 2 or higher.

bob_id, an array of IDs for any break-out boxes that may be connected to the SCAs. Possible values are:

Break-out Box ID Values

Define (in e1432.h) Meaning

E1432_BOB_ID_NONE No smart break-out box detected
E1432_BOB_ID_CHARGE_PROT O Prototype Charge/ICP break-out box
E1432_BOB_ID_CHARGE Charge/ICP break-out box
E1432_BOB_ID_CHARGE2 B-version of Charge/ICP break-out box
E1432_BOB_ID_MIKE_PROT O Prototype Microphone break-out box
E1432_BOB_ID_MIKE Microphone break-out box
E1432_BOB_ID_MIKE2 B-version of Microphone break-out box

total_chans, the total number of input, source, and tach channels present in the module.

input_chans, the total number of input channels present in the module.

source_chans, the total number of source channels present in the module.

tach_chans, the total number of tach channels present in the module.

oct_present, which is non-zero if the module has the Octave option (1D1) installed.

lbus_present, which is non-zero if the module supports VXI local-bus transfers.

dram_size, which is the total size of DRAM, in terms of 32-bit words.

a24_used, which is the total amount of A24 space used by this module, in bytes. This value will either be
1MB or 256KB, depending on the VXI interface ROM present in the module.

serial, which is a string containing the serial number of the module.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_assign_channel_numbers, e1432_install

50 E1432

E1432_GET_XXX_LIMITS(3) E1432_GET_XXX_LIMITS(3)

NAME
e1432_get_xxx_limits − Get parameter limits

SYNOPSIS
SHORTSIZ16 e1432_get_arm_time_interval_limits(E1432ID hw,

SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_avg_number_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_avg_update_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_avg_weight_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_blocksize_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_cal_dac_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_cal_voltage_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_center_freq_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_clock_freq_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,

E1432 51

E1432_GET_XXX_LIMITS(3) E1432_GET_XXX_LIMITS(3)

FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_decimation_undersamp_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_delta_order_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_fifo_size_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_filter_settling_time_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_internal_debug_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_interrupt_priority_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_max_order_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_meas_time_length_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_overlap_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,

52 E1432

E1432_GET_XXX_LIMITS(3) E1432_GET_XXX_LIMITS(3)

FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_peak_decay_time_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_rms_avg_time_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_rms_decay_time_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_span_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_trigger_delay_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_triggers_per_arm_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_xfer_size_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_amp_scale_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_coupling_freq_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,

E1432 53

E1432_GET_XXX_LIMITS(3) E1432_GET_XXX_LIMITS(3)

FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_duty_cycle_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_filter_freq_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_input_offset_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_pre_arm_rpm_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_ramp_rate_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_range_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_range_charge_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_range_mike_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_rpm_high_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,

54 E1432

E1432_GET_XXX_LIMITS(3) E1432_GET_XXX_LIMITS(3)

FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_rpm_interval_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_rpm_low_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_rpm_smoothing_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_sine_freq_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_sine_phase_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_source_blocksize_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_source_centerfreq_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_source_seed_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_source_span_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,

E1432 55

E1432_GET_XXX_LIMITS(3) E1432_GET_XXX_LIMITS(3)

FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_srcbuffer_size_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_tach_decimate_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_tach_holdoff_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_tach_max_time_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_tach_ppr_limits(E1432ID hw,
SHORTSIZ16 ID,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

SHORTSIZ16 e1432_get_trigger_level_limits(E1432ID hw,
SHORTSIZ16 ID,
SHORTSIZ16 which,
FLOATSIZ32 *min,
FLOATSIZ32 *max,
FLOATSIZ32 *def,
FLOATSIZ32 *step)

DESCRIPTION
For every numerical parameter understood by the E1432 module, there is a corresponding
e1432_get_xxx_limitsfunction. This function can be used by an application to provide appropriate limits
on a user-interface. In general, the limits returned by this function reflect the limits that the current hard-
ware is capable of supporting. In cases where several parameters interact, the interaction isnot accounted
for when providing the limits.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. IfID is a group ID, then all channels in that group must have the same parame-
ter limits, or the function will return an error.

56 E1432

E1432_GET_XXX_LIMITS(3) E1432_GET_XXX_LIMITS(3)

Some parameters are global for an entire module, other parameters are channel-specific. For module-wide
parameters, the channel or channels specified by theID parameter are used only to determine which E1432
module is being queried. In the above list of functions,blocksizethroughtriggers_per_armare module-
wide parameters, whileamp_scalethroughtrigger_levelare channel-specific.

min is a pointer to a 32-bit float which will be filled with the minimum valid value for the parameter.

maxis a pointer to a 32-bit float which will be filled with the maximum valid value for the parameter.

def is a pointer to a 32-bit float which will be filled with the default (reset) value of the parameter.

stepis a pointer to a 32-bit float which will be filled with the step-size between valid values of the parame-
ter.

If the parameter can take on any floating-point value between themin andmax, thenstepwill be set to zero.
If the parameter takes on discrete values that are evenly spaced, thenstepwill be set to the spacing between
valid values of the parameter. (For example, the interrupt priority can use any of the values 0, 1, 2, 3, 4, 5,
6, or 7, so thestep is set to1 in this case.) If the parameter takes on discrete values that are not evenly
spaced, then thestepis set to-1.

In some cases, there are no valid values for a parameter. This happens, for example, with
e1432_get_tach_holdoff_limitswhen the channel specified is not a tach channel. In cases like this, themin
is set larger thanmax, and thestepis set to-2. The function doesnot return an error in this case.

In general, the limit values returned will depend on what SCAs are installed on the E1432, how much RAM
is available on the E1432, and what hardware options are present.

All of the functions documented on this manual page take exactly the same form of parameters, except for
e1432_get_trigger_level_limits. This function has an additional parameterwhich, which must be one of
E1432_TRIGGER_LEVEL_LOWER or E1432_TRIGGER_LEVEL_UPPER.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_blocksize_current_max, e1432_get_fifo_size_current_max

E1432 57

E1432_GET_MEAS_STATE(3) E1432_GET_MEAS_STATE(3)

NAME
e1432_get_meas_state − Get measurement state

SYNOPSIS
SHORTSIZ16 e1432_get_meas_state(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *state)

DESCRIPTION
e1432_get_meas_stategets the current state of the measurement loop that runs in an E1432 module.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. If the ID is a group ID, and if the modules in the group are not all at the same
measurement state, then this function tries to figure out the "lowest" state that they are all in, and returns
that. When determining the "lowest" state, this function tries to take into account the fact thatIDLE fol-
lows CONVERT_WAIT2 , and tries to come up with the state of the module which is furthest behind in the
measurement loop.

stateis a pointer to a 16-bit int, and will be filled with the current measurement state. The measurement
state will be one of:

E1432_MEAS_STATE_TESTED
E1432_MEAS_STATE_BOOTING
E1432_MEAS_STATE_BOOTING_WAIT1
E1432_MEAS_STATE_BOOTING_WAIT2
E1432_MEAS_STATE_BOOTED
E1432_MEAS_STATE_SYNC
E1432_MEAS_STATE_SYNC_WAIT1
E1432_MEAS_STATE_PRE_ARM
E1432_MEAS_STATE_PRE_ARM_WAIT2
E1432_MEAS_STATE_IDLE
E1432_MEAS_STATE_ARM
E1432_MEAS_STATE_ARM_WAIT1
E1432_MEAS_STATE_ARM_WAIT2
E1432_MEAS_STATE_TRIGGER
E1432_MEAS_STATE_CONVERT
E1432_MEAS_STATE_CONVERT_WAIT1
E1432_MEAS_STATE_CONVERT_WAIT2
E1432_MEAS_STATE_ERROR
E1432_MEAS_STATE_ERROR_WAIT1
E1432_MEAS_STATE_ERROR_WAIT2
E1432_MEAS_STATE_TPUT

The following is more details about the measurement state than you really wanted to know:

E1432_MEAS_STATE_TESTED

No measurement running. This state is what the module goes to at
boot-up, and after e1432_reset_measure. Sync/Trig high, module
waiting for it to go low to indicate start of measurement. A meas
state change interrupt is generated when the module reaches this
state from a different state.

E1432_MEAS_STATE_BOOTING

58 E1432

E1432_GET_MEAS_STATE(3) E1432_GET_MEAS_STATE(3)

Measurement starting, module doing setup and testing parameters
for consistency. Sync/Trig held low.

E1432_MEAS_STATE_BOOTING_WAIT1

Module done doing setup, waiting for all SCAs to be ready for
measurement sync. Sync/Trig held low.

E1432_MEAS_STATE_BOOTING_WAIT2

Module done doing setup, all SCAs ready for measurement sync.
Module releases Sync/Trig line, and is waiting for the line to go
high.

E1432_MEAS_STATE_BOOTED

Sync/Trig high, module waiting for it to go low to indicate the
measurement sync. A meas state change interrupt is generated when
the module reaches this state from a different state.

E1432_MEAS_STATE_SYNC

Measurement sync just happened, all inputs start collecting
data. Sync/Trig held low. Fall through to next state.

E1432_MEAS_STATE_SYNC_WAIT1

Module waiting for input digital filters to finish settling.
Sync/Trig held low.

E1432_MEAS_STATE_PRE_ARM

Module done waiting for digital filter settling, now waiting for
measurement pre-arm. Sync/Trig held low. A meas state change
interrupt is generated when the module reaches this state from a
different state.

E1432_MEAS_STATE_PRE_ARM_WAIT2

Module done waiting for pre-arm. Module releases Sync/Trig line,
and is waiting for the line to go high.

E1432_MEAS_STATE_IDLE

Sync/Trig high, module waiting for it to go low to indicate
measurement arm. A meas state change interrupt is generated when
the module reaches this state from a different state.

E1432_MEAS_STATE_ARM

Measurement arm just happened. Sync/Trig held low. Fall through
to next state. A meas state change interrupt is generated when
the module reaches this state from a different state.

E1432 59

E1432_GET_MEAS_STATE(3) E1432_GET_MEAS_STATE(3)

E1432_MEAS_STATE_ARM_WAIT1

Module waiting for pre-trigger acquisition to complete, and for
sources to be ready for trigger. Sync/Trig held low.

E1432_MEAS_STATE_ARM_WAIT2

Pre-trigger acquisition done, sources ready for trigger. Module
releases Sync/Trig line, and is waiting for the line to go high.

E1432_MEAS_STATE_TRIGGER

Sync/Trig high, module waiting for it to go low to indicate
measurement trigger. A meas state change interrupt is generated
when the module reaches this state from a different state.

E1432_MEAS_STATE_CONVERT

Measurement trigger just happened. Sync/Trig held low. Fall
through to next state. A meas state change interrupt is generated
when the module reaches this state from a different state.

E1432_MEAS_STATE_CONVERT_WAIT1

Module waiting for input data block to be acquired, and for source
burst to complete. Sync/Trig held low. If the module is in
continuous mode, it stays here until FIFO overflow. If the module
is in overlap block or overlap free-run mode, it does not wait for
input data block to be acquired.

E1432_MEAS_STATE_CONVERT_WAIT2

Previous state completed, Sync/Trig line released, module waiting
for it to go high. The next state will be TESTED if the module
was in continuous mode, or IDLE otherwise.

E1432_MEAS_STATE_DUMMY

Dummy state, never reached.

E1432_MEAS_STATE_ERROR E1432_MEAS_STATE_ERROR_WAIT1
E1432_MEAS_STATE_ERROR_WAIT2

Transitional states reached only briefly if an error happens during
a measurement. The next state will be TESTED.

E1432_MEAS_STATE_DUMMY2

Dummy state, never reached.

E1432_MEAS_STATE_TPUT

Used only when doing thruput to the local bus, and at the same
time sending data over VME (the data port parameter set to

60 E1432

E1432_GET_MEAS_STATE(3) E1432_GET_MEAS_STATE(3)

E1432_SEND_PORT_LBUS_EAVES). If an RPM armed or time armed
measurement is done, eventually the RPM armed or time armed
measurement completes. However, this does not cause the time data
that is sent to the local bus to stop. Instead, the local bus
data continues, and the measurement state switches to
E1432_MEAS_STATE_TPUT. The local bus data continues until
the measurement is reset.

RESET VALUE
After a reset, the measurement state isE1432_MEAS_STATE_TESTED.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_init_measure

E1432 61

E1432_GET_OCTAVE_BLOCKSIZE(3) E1432_GET_OCTAVE_BLOCKSIZE(3)

NAME
e1432_get_octave_blocksize − Get current Octave data blocksize

SYNOPSIS
SHORTSIZ16 e1432_get_octave_blocksize(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *octave_blocksize)

DESCRIPTION
e1432_get_octave_blocksizereturns the current Octave data blocksize of the modules(s) selected into a
memory location pointed to byoctave_blocksize.

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
The ID parameter is used only to identify which module the function applies to, and all channels in that
module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to query.

Since the e1432_set_octave_start_freq and e1432_set_octave_stop_freq functions change the number of
data points transferred by the e1432_read_XXXXXXX_data functions, thee1432_get_octave_blocksize
function has been provided to supply the value needed for thesize parameter of the
e1432_read_XXXXXXX_data functions.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_avg_mode, e1432_set_octave_hold_mode,
e1432_set_octave_start_freq, e1432_set_octave_stop_freq, e1432_set_octave_int_time,
e1432_set_octave_time_const, e1432_set_octave_time_step, e1432_octave_ctl, e1432_get_current_data

62 E1432

E1432_GET_RAW_TACHS(3) E1432_GET_RAW_TACHS(3)

NAME
e1432_get_raw_tachs − Read raw tach time data from a tachometer channel

SYNOPSIS
SHORTSIZ16 e1432_get_raw_tachs(E1432ID hw, SHORTSIZ16 ID,

unsigned long *buffer,
LONGSIZ32 size, LONGSIZ32 *actualCount)

DESCRIPTION
e1432_get_raw_tachsreturns a block of raw tach times into the buffer pointed to bybuffer. When the tach
buffer on the E1432 is more than half full theE1432_IRQ_TACHS_AVAIL bit in the
E1432_IRQ_STATUS2_REGregister is set. This bit can be polled or interrupted on to know when to get
the tach times

NOTE: This status bit will be set wheneither tach channel’s buffer is over half full; so if both tach chan-
nels are active, thee1432_get_raw_tachsmust be called for both to clear this bit. If a second tach chan-
nel’s tach times are not going to be read, then this channel should be made to be inactive with
e1432_set_active.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID must be the ID of a single tachometer channel.

buffer is a pointer to the array for returned data.

sizeis the size, in data points, ofbuffer.

Note: always make this size less than or equal to the actual allocated memory forbufferor the function may
overrun yourbuffer.

actualCountis a pointer to a long integer. It is set to the actual number of raw tach times transferred into
buffer. It will always be less than or equal tosizeand may be zero, if no new tach times were accumulated,
or there has been an overflow in the tach buffer internal to the tach daughter card. A tach overflow can be
determined by a setE1432_STATUS2_TACH_OVERFLOW bit in the E1432_IRQ_STATUS2_REG
register.

NOTE: If there has been a tach overflow, there still will be up toE1432_TACH_RAW_SIZE tach edge
times stored in the module’s raw tach buffer that are available for internal processing (i.e. order track arm
points); so theE1432_STATUS2_TACH_OVERFLOW measurement error is not returned by the
e1432_block_availablefunction until all the stored tach edges are processed and the input data associated
with the are transferred to the host.

Raw tach times are just latched values of a 32 bit counter driven by a tachometer clock. The frequency of
this clock is obtained by a call toe1432_get_tach_clock_freq. The following snipet of code shows how to
convert raw times into seconds, accounting for tach counter rollover:

SHORTSIZ16 error, count;
unsigned long buffer[BUF_SIZE];
double tachTimes[BUF_SIZE];

long tachTimeLast = 0;
float tachFreq;
double tachTimeOffset = 0.0, tachTimeStep;

e1432_get_tach_clock_freq(hw, ID, &tachFreq);
tachTimeStep = 1.0 / (double)tachFreq;

E1432 63

E1432_GET_RAW_TACHS(3) E1432_GET_RAW_TACHS(3)

error = e1432_get_raw_tachs(hw, ID, buffer, BUF_SIZE, &count);
if(error) {

printf("e1432_get_raw_tachs returned error = %d0, error);
exit(-1);

}

/* convert raw tach times to seconds */
for(i = 0; i < count; i++)
{

if(buf[i] < tachTimeLast) /* tach counter rollover has occured */
{

tachTimeOffset += E1432_TACH_WRAP_COUNT * tachTimeStep;
}
tachTimeLast = buf[i];
tachTimes[i] = tachTimeOffset + (double)buf[i] * tachTimeStep;

}

NOTE: Once this function is called the first time either it or the functione1432_send_tachsmust be
called regularly to read tach values out of the module. If tach times are not read out often enough, a
tach buffer overflow will happen, which will overwrite the internal tach buffer and cause
e1432_block_availableto return ERR1432_TACH_BUFFER_OVERFLOW .

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_scale, e1432_set_append_status, e1432_set_data_size, e1432_set_data_port, e1432_send_tachs.

64 E1432

E1432_GET_REGISTER_ADDRESS(3) E1432_GET_REGISTER_ADDRESS(3)

NAME
e1432_get_register_address − Get memory mapped address of E1432 register

SYNOPSIS
SHORTSIZ16 e1432_get_register_address(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 regOffset,
volatile SHORTSIZ16 **addr)

DESCRIPTION
e1432_get_register_addressreturns the address of a register on a single E1432, identified by one of its
channels,ID. This address can be used to directly access the register in question.Note: bus errors that
occur when accessing a register from an address returned by this function are not trapped; so extreme care
must be exercised when using the address returned.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is the ID of a single channel.

regOffsetis the offset of the register relative to the base address of the E1432. Register offsets have defines
of the formE1432_<register_name>_REG in the filee1432.h. For instance, E1432_VXI_ID_REG is at
register offset 0. The list of E1432 registers, and their detailed description, may be found in the hardware
appendix.

addr is a pointer to a pointer to a SHORTSIZ16.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_read_register

E1432 65

E1432_GET_SAMPLES_TO_PRE_ARM(3) E1432_GET_SAMPLES_TO_PRE_ARM(3)

NAME
e1432_get_samples_to_pre_arm − Get number of samples to pre_arm condition

SYNOPSIS
SHORTSIZ16 e1432_get_samples_to_pre_arm(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *samples)

DESCRIPTION
e1432_get_samples_to_pre_armreturns the number of samples in the data FIFO from the first sample to
the pre_arm condition. This information can be used to find the tachometer times of the first sample of a
block of data.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

samplesis the number of samples from the first sample to the pre_arm condition.

RESET VALUE
0

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_raw_tachs, e1432_get_tach_delay, e1432_get_append_status

66 E1432

E1432_GET_SCALE(3) E1432_GET_SCALE(3)

NAME
e1432_get_scale − Calculate scale factor for current board settings

SYNOPSIS
SHORTSIZ16 e1432_get_scale(E1432ID hw, SHORTSIZ16 ID, FLOATSIZ64 *scale)

DESCRIPTION
This function is not needed by most users.The typical application usese1432_read_float32_dataor
e1432_read_float64_datato get input data from the E143x modules, and those functions already scale their
results correctly to volts or picoCoulombs. In fact, those functions internally calle1432_get_scaleto get
the correct scale factor to use.

e1432_get_scalereturns a scaling factor to convert raw input data into volts. The data from
e1432_read_raw_datashould be multiplied by this scale factor to get voltage (or picoCoulombs if the input
channel is in charge mode). The scale factor accounts for break-out box settings, range, span, and multi-
pass filtering effects. A call with group ID will returnERR1432_PARAMETER_UNEQUAL if all chan-
nels do not have the same scale factor.NOTE: the scale factor can only by applied to raw time data
frequency and order data are already scaled to volts internally.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is the ID of a group or single channel.

It is possible to set up an input channel to monitor the tach signal seen on a tach channel input. Normally,
when this is done the tach channel drives CALOUT, the substrate connects CALOUT to CALIN, and the
input channel monitors CALIN. (Seee1432_set_input_highand e1432_set_calinfor details.) The scale
factor frome1432_get_scalewill correctly account for the tach board and calibration scale factors.

It is also possible to set up a tach channel to drive the VXI sumbus, and have the sumbus drive CALIN, and
have an input channel monitor CALIN. For this to work correctly, passE1432_CALIN_SUMBUS_TACH
(not E1432_CALIN_SUMBUS) to e1432_set_calin, to ensure that the input channel can figure out the cor-
rect scale factor.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_read_float32_data, e1432_read_float64_data, e1432_read_raw_data, e1432_set_data_size,
e1432_set_input_high

E1432 67

E1432_GET_TACH_CLOCK_FREQ(3) E1432_GET_TACH_CLOCK_FREQ(3)

NAME
e1432_get_tach_clock_freq − Get the tachometer channel clock frequency

SYNOPSIS
SHORTSIZ16 e1432_get_tach_clock_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *freq)

DESCRIPTION
e1432_get_tach_clock_freqreturns the clock frequency of the counters on the tachometer channels into the
variable pointed to byfreq. The tachometer option measures raw times of tach crossings by latching the
value these 32 bit counters. The clock frequency returned by this function is used in conjunction with raw
tach times obtained by a call toe1432_get_raw_tachsto calculate the times of these tach crossing in sec-
onds.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is an ID on a module containing a tachometer channel.

freq is a pointer to a 32-bit float which will be filled in with the requested clock frequency.

RESET VALUE
After a reset,freq is set to 19,660,800 Hz.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_raw_tachs

68 E1432

E1432_GET_TACH_DELAY(3) E1432_GET_TACH_DELAY(3)

NAME
e1432_get_tach_delay − Get the delay time from sytem sync to first sample

SYNOPSIS
SHORTSIZ16 e1432_get_tach_delay(E1432ID hw, SHORTSIZ16 ID, FLOATSIZ32 *delay)

DESCRIPTION
e1432_get_tach_delayreturns the correction to the tach times such that they will be expressed relative to
the time of the first sample in the data FIFO. The tachometer times are all relative to the time when the sys-
tem SYNC line starts a measurement. Data from the input modules starts filling the data FIFO at some
time after that because of ADC settling times and digital filter delays. Addingdelayto the tach times cal-
culated from the raw tach times returned bye1432_get_raw_tachswill yield tach times that are relative to
the first sample of data in a measurement. Conversely, the negative ofdelayis the time between SYNC and
the first sample of data.

NOTE: the first sample in the FIFO is not the same as the first sample in the first block.The first
block of data starts after the pre_arm conditions are met. To find the number of samples in the FIFO prior
to the pre_arm condition, call the functione1432_get_samples_to_pre_arm. The number of samples from
pre_arm to the first sample in each block is found by summing thegap fields found in the data trailer of
each block.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

delayis the desired correction in seconds to be added to tach times to make them relative to the first sample
of data in the FIFO.

The following sample code shows how to calculate the tach time of the first sample in the first block of
data:

float delay, tach_correction, span;
long pre_arm_samples, gap_sum = 0, count;
float data[BLOCK_SIZE];
struct e1432_trailer trailer;

e1432_set_append_status(hw, ID, E1432_APPEND_STATUS_ON);

/* start measurement */

e1432_get_tach_delay(hw, ID, &delay);
e1432_get_samples_to_pre_arm(hw, ID, &pre_arm_samples);
e1432_get_span(hw, ID, &span);

/* wait for first data block */
while(e1432_block_available(hw, input) <= 0)

;

error = e1432_read_float32_data(hw, ID,
E1432_TIME_DATA, data, BLOCK_SIZE, &trailer, &count);

/* samples from pre_arm to first in block */
if (zoom)
{

E1432 69

E1432_GET_TACH_DELAY(3) E1432_GET_TACH_DELAY(3)

gap_sum += trailer.gap / 2;
tach_correction = delay -

(float)(pre_arm_samples + gap_sum) / (1.28 * span);
}
else
{

gap_sum += trailer.gap;
tach_correction = delay -

(float)(pre_arm_samples + gap_sum) / (2.56 * span);
}

RESET VALUE
0

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_raw_tachs, e1432_get_samples_to_pre_arm, e1432_get_append_status

70 E1432

E1432_GET_TRIG_CORR(3) E1432_GET_TRIG_CORR(3)

NAME
e1432_get_trig_corr − Get trigger to sample delay correction

SYNOPSIS
SHORTSIZ16 e1432_get_trig_corr(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *trig_corr)

DESCRIPTION
e1432_get_trig_corrgets the trigger to sample delay correction for the current triggered measurement.
This delay is from the trigger event to the next sample point. It includes both the delay from trigger to the
next sample clock and the delay from trigger to the next decimated output point. It is normalized such that
1.0 is equivalent to one (decimated) sample interval.

The delay returned bye1432_get_trig_corris not absolute. Other, fixed delays are present, which depend
on setup conditions. The delay returned by this function is suitable for correcting time record position such
that the trigger event is accurately repeatable from sample to sample. One application of this function is
correcting data prior to time averaging.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

trig_corr is a pointer to 32-bit float, and will be filled with the current trigger to sample correction value.
This is the same parameter as the trig_corr entry in the trailer.

RESET VALUE
The value ofdelayis not valid until after a triggered measurement.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_append_status

E1432 71

E1432_GET_MEAS_WARNING(3) E1432_GET_MEAS_WARNING(3)

NAME
e1432_get_meas_warning − get warnings from the measurement

SYNOPSIS
SHORTSIZ16 e1432_get_meas_warning(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *warning, unsigned long size, LONGSIZ32 *actualCount)

DESCRIPTION
e1432_get_meas_warningreturns zero or more warning codes from a measurement running in the E1432
module into a user buffer. Warnings are considered less serious than errors, which will stop a measurement.
Currently the only measurements which return warnings are rpm arming and Order Tracking measure-
ments. The warnings are defined inerr1432.h. Warning messages can be obtained using
e1432_get_warning_string. Warnings are currently issued when arming points are missed or lost because
of the following reasons:

WARN1432_LOST_NOT_ENOUGH_TACHS is issued when there is not enough tach edges present to
do the resampling calculation.

WARN1432_LOST_TOO_MANY_TACHS is issued when the tach pulses are coming too fast to acco-
modate. The internal tach time buffers have wrapped and erased some of the tach times needed for the
resampling calculation.

WARN1432_LOST_TOO_MANY_POINTS_REQUIRED is issued when the number of data points
needed for a resampling calculation is greater than the size of the channel’s span buffer in the FIFO.

WARN1432_LOST_DAT A_SHIFTED_OUT_FIFO is issued when the measurement is falling behind
and the data needed in the FIFO has already been overwritten by newer data before the FIFO could be
stopped.

WARN1432_LOST_NOT_ENOUGH_DAT A_FIFO is issued when there is not enough data in the span
buffer in the FIFO to do the resampling calculation.

WARN1432_LOST_RPM_TOO_HIGH is issued when the RPM calculated from the tach input is greater
than maximum allowed for the top span of data in the FIFO. This maximum is (top_span / max_order) *
60.0.

WARN1432_LOST_RPM_TOO_LOW is issued when the RPM calculated from the tach input is lower
than minimum allowed for the bottom span of data in the FIFO. This minimum is (bottom_span /
max_order) * 60.0.

WARN1432_LOST_RESAMPLE_ERROR is issued when an internal computational error occurs in the
resampling calculation. This should not happen.

WARN1432_LOST_FIFO_EMPTIED is issued when a stopped FIFO has finished emptying it’s data.
The FIFO is stopped when the addition of new data would overwrite data needed for already queued arm
points.

WARN1432_RPM_RAMP_TO_FAST is issued when the tach RPM changes to fast to be able to cor-
rectly resample the input data into the order domain.

A bit defined by E1432_IRQ_MEAS_WARNING is set in the status register,
E1432_IRQ_STATUS2_REGwhen there are warnings available. This bit can be interrupted on.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

72 E1432

E1432_GET_MEAS_WARNING(3) E1432_GET_MEAS_WARNING(3)

ID is a group ID of the channels involved in the measurement.

warning is a pointer to an array into which the warning codes are placed.

sizeis the size, in elements, ofwarning.

Note: always make this size less than or equal to the actual allocated memory forwarningor the function
may overrun the array.

actualCountis a pointer to a long integer. It is set to the actual number of warning codes transferred into
warning. It will always be less than or equal tosizeand may be zero, if no new warnings were accumu-
lated.

The following code illustrates how to query for errors, warnings and end of measurment while looking for a
block available:

#define WARNING_MAX 100

/* Wait for block available, checking for errors, warnings and end */
do
{

e1432_get_meas_state(hw, inputs, &meas_state);
if(meas_state == E1432_MEAS_STATE_TESTED)
{

printf("Measurement finished.0);
exit(0);

}

e1432_read_register(hw, inputs, E1432_IRQ_STATUS2_REG, &status);
if(status & E1432_IRQ_MEAS_ERROR)
{

if(status & E1432_STATUS2_TACH_OVERFLOW)
(void) printf("Tach buffer overflowed0);

else
(void) printf("Fifo overflowed0);

exit(-1);
}

if(status & E1432_IRQ_MEAS_WARNING)
{

/* read out all measurement warnings */
while(status & E1432_IRQ_MEAS_WARNING)
{

e1432_get_meas_warning(hw, inputs, warning, WARNING_MAX,
&warningCount);

if(warningCount)
{

printf("%d Warning", warningCount);
if(warningCount > 1) printf("s");
printf(":0);

}

E1432 73

E1432_GET_MEAS_WARNING(3) E1432_GET_MEAS_WARNING(3)

for(i=0; i < warningCount; i++)
printf(" %s0, e1432_get_warning_string(warning[i]);

e1432_read_register(hw, inputs,
E1432_IRQ_STATUS2_REG, &status);

}
}

}while((status & E1432_IRQ_BLOCK_READY) == 0);

RESET VALUE
Not applicable.

RETURN VALUE
Returns 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_warning_string

74 E1432

E1432_GET_WARNING_STRING(3) E1432_GET_WARNING_STRING(3)

NAME
e1432_get_warning_string − get string associated with a measurement warning

SYNOPSIS
char *e1432_get_warning_string(SHORTSIZ16 warning)

DESCRIPTION
e1432_get_warning_stringreturns a string that is a brief description of the measurement warning,warning,
which has been returned by thee1432_get_meas_warningfunction.

warning is a warning number.

RESET VALUE
Not applicable.

RETURN VALUE
Returns a string.

SEE ALSO
e1432_get_meas_warning

E1432 75

E1432_INIT_IO_DRIVER(3) E1432_INIT_IO_DRIVER(3)

NAME
e1432_init_io_driver − Initialize I/O driver
e1432_set_interface_addr − Set SICL interface name
e1432_uninit_io_driver − Close SICL files and free all memory

SYNOPSIS
SHORTSIZ16 e1432_init_io_driver(void)
SHORTSIZ16 e1432_set_interface_addr(const char *name)
SHORTSIZ16 e1432_uninit_io_driver(void)

DESCRIPTION
e1432_init_io_drivermust be the first routine called when using the E1432 library. It performs whatever
initialization the I/O driver (for example, SICL) needs for the environment in which this library is running.

e1432_set_interface_addris the one function which can be called beforee1432_init_io_driver. Call
e1432_set_interface_addrbeforee1432_init_io_driverto change the SICL interface name from the default
of "vxi" to some other interface name. See your SICL documentation for more information. SICL is the
’Standard Instrument Interface Library’ that the E1432 interface library calls to communicate with the
E1432 hardware.

namespecifies the SICL interface name. If this name is longer thanE1432_SICL_NAME_MAX - 1, it is
silently truncated to that length. Ifnameis specified as the empty string, then the default name ("vxi") will
be used.

e1432_uninit_io_driveris the inverse ofe1432_init_io_driver. It frees all memory that the library has allo-
cated internally, unmaps VXI shared memory windows, and closes all file descriptors that the library
openned. After this call, no other calls to the E1432 host interface library should be made (except for
anothere1432_init_io_driverto re-open the library).

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise

SEE ALSO
e1432_assign_channel_numbers

76 E1432

E1432_INIT_MEASURE(3) E1432_INIT_MEASURE(3)

NAME
e1432_init_measure − Initialize measurement, move E1432s to IDLE state

SYNOPSIS
SHORTSIZ16 e1432_init_measure(E1432ID hw, SHORTSIZ16 ID)
SHORTSIZ16 e1432_init_measure_to_booted(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 wait_after)
SHORTSIZ16 e1432_init_measure_finish(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 wait_after)

DESCRIPTION
e1432_init_measureplaces all modules in the group into the idle state. The modules can be in any state
before the call soe1432_init_measurecan be used to abort a current measurement.

After the call toe1432_init_measurecompletes successfully, the E1432 will ready for arming and trigger-
ing (seee1432_arm_measureande1432_trigger_measure). If auto arm or auto trigger are on, the hardware
may proceed beyond the idle state without further intervention.

Overload flags are reset bye1432_init_measure, seee1432_check_overloads.

e1432_init_measure_to_bootedis for the special case of the library user wanting to initialize the modules
half way, (to booted state), performing some communications with other hardware on the VXI bus, and then
finishing the measurement initialization withe1432_init_measure_finish. Most users will need only the
e1432_init_measureto perform data collection with the E1432.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

wait_after is used only withe1432_init_measure_to_bootedande1432_init_measure_finish. If this is set
to non-zero, the function will not return until the module has completed moving to theBOOTED state (for
e1432_init_measure_to_booted) or the IDLE state (fore1432_init_measure_finish). If it is zero, then the
functions will return as soon as they are done requesting that the measurement state move, not waiting for
the module to actually complete moving to the next measurement state.

The measurement itself consists of two phases, the measurement initialization, and the measurement loop.
Each of these phases consists of several states, through which the measurement progresses. The transition
from one state to the next is tied to a transition in the SYNC line (one of the TTLTRG lines on the VXI
backplane). This SYNC line is "wired-ORed" such that all E1432s in a multiple module system must
release it for it to go high. Only one E1432 is required to pull the SYNC line low. In a single E1432 sys-
tem, the SYNC line is local to the module and is not tied into a TTLTRG line on the VXI backplane.

The measurement initialization states, and the corresponding SYNC line transitions (with ’H’ for high, ’L’
for Low) are:

TESTED ---> BOOTING ---> BOOTED ---> SYNC ---> PRE_ARM ---> IDLE
H->L L->H H->L L->H

This complete measurement sequence initialization, fromTESTED, through BOOTING , BOOTED,
SYNC, PRE_ARM, and ultimately IDLE , can be performed with a call to the function
e1432_init_measure.

E1432 77

E1432_INIT_MEASURE(3) E1432_INIT_MEASURE(3)

The progression of measurement loop states and the corresponding SYNC line transitions are:

| |

------> IDLE -----> ARM -----> TRIGGER -----> MEASURE -----
H->L L->H H->L L->H

In theIDLE state the E1432 clears the FIFO An E1432 remains in theIDLE state until it sees a high to low
transition of the SYNC line. If any of the E1432 is programmed for auto arming, with
e1432_set_auto_arm, the SYNC line immediately goes low, exiting theIDLE state for the ARM state. The
E1432 may also be moved to the ARM state by an explicit call to the function,e1432_arm_measure.

Upon entering theARM state, the E1432 starts saving new data in it’s FIFO. It remains in theARM state
until the SYNC signal goes high. If an E1432 is programmed with a pre-trigger delay, it collects enough
data samples to satify this pre-trigger delay, and then releases the SYNC line. If no pre-trigger delay has
been programmed, the SYNC line goes high immediately. When all E1432s in a system have released the
SYNC line allowing it to go high, a transition to theTRIGGER state occurs.

Upon entering theTRIGGER state an E1432 continues collecting data into the FIFO, discarding any data
prior to the pre-trigger delay. An E1432 remains in theTRIGGER state until it sees a high to low transi-
tion of the SYNC line. The SYNC line is pulled low by any E1432 which encounters a trigger condition
and is programmed to pull the SYNC line. If any E1432 is programmed for auto triggering, with
e1432_set_auto_trigger, the SYNC line goes low immediately, exiting theTRIGGER state. The SYNC
line may also be pulled low by an explicit call to the function,e1432_trigger_measure.

Upon entering theMEASURE state an E1432 continues to collect data. The E1432 also presents the first
data from the FIFO to the selected output port, making it available to the controller to read. The E1432
holds the SYNC line low as long as it it actively collecting data.

Note: When in the one of the RPM arming/triggering modes in a multiple module system, the slave mod-
ules move from state to state in a different manner. They change states in response to a command passed
from the master through the host computer. Seee1432_set_arm_modefor details of this behavior.

In block mode the E1432 module stops taking data as soon as a block of data has been collected, including
any programmed pre or post trigger delays. In continuous mode, the E1432 stops taking data when the
FIFO overflows. After the FIFO overflow, the E1432 will remain in theMEASURE state, not taking data,
until the FIFO is emptied, and then it will move to theTESTED state. For more information about data
modes, see thee1432_set_data_modemanual page.

A channel group that spans more than one module will need to be configured to use the TTLTRG trigger
lines on the VXI bus for inter-module communication. This configuration is automatically performed in the
e1432_init_measure call unless defeated using e1432_set_auto_group_meas. See the
e1432_set_auto_group_measmanual page for details on what setups are done automatically.

There are 4 pairs of VXIBUS TTLTRG lines that can be used for multi-module synchronization. The pair
is selected using thee1432_set_ttltrg_clockande1432_set_ttltrg_satrg(be sure to use a group ID for those
functions, to ensure that all modules in the group are set to the same two TTLTRG lines).

After a multi-module measurement has completed, the modules are left connected to the VXI TTLTRG
lines. This helps subsequent multi-module measurements start more quickly. Howev er, it can also cause
problems if a module (call it module ’A’) is driving the TTL trigger lines and a different group is started
which also drives the TTLTRG lines, and that different group does not include module ’A’. Module ’A’
will conflict and prevent the different group from functioning properly. In this case a call to
e1432_finish_measurefor module ’A’ will disconnect module ’A’ from the TTLTRG lines, allowing the

78 E1432

E1432_INIT_MEASURE(3) E1432_INIT_MEASURE(3)

new group to function properly.

Note that if the new group includes all modules of the old group, the conflict will not occur since
e1432_init_measurewill reset all modules as needed. Also note that single module groups do not drive the
TTLTRG lines, so single modules groups are immune from causing or receiving this conflict.

At the start of a measurement that uses local bus, it is important to properly reset the local bus before start-
ing the measurement. Before resetting the local bus, make sure all E1432 modules are no longer running
any previous measurement, by callinge1432_reset_measure. Then the local bus interface on all VXI cards
must be reset, and then they must all be un-reset. The order in which the cards must be reset and un-reset is
important. After all that, the measurement can be started withe1432_init_measure.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_arm_measure, e1432_trigger_measure, e1432_finish_measure, e1432_reset_measure,
e1432_check_overloads, e1432_reset_lbus, e1432_set_auto_group_meas, e1432_set_ttltrg_clock,
e1432_set_ttltrg_satrg

E1432 79

E1432_INIT_MEASURE_MASTER_FINISH(3) E1432_INIT_MEASURE_MASTER_FINISH(3)

NAME
e1432_init_measure_master_finish − Master side measurement init e1432_init_measure_master_setup −
Master side measurement init e1432_init_measure_slave_finish − Slave side measurement init
e1432_init_measure_slave_middle − Slave side measurement init e1432_init_measure_slave_setup −
Slave side measurement init

SYNOPSIS
SHORTSIZ16 e1432_init_measure_master_finish(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 wait_after)
SHORTSIZ16 e1432_init_measure_master_setup(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 wait_after)
SHORTSIZ16 e1432_init_measure_slave_finish(E1432ID hw, SHORTSIZ16 ID)
SHORTSIZ16 e1432_init_measure_slave_middle(E1432ID hw, SHORTSIZ16 ID)
SHORTSIZ16 e1432_init_measure_slave_setup(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
These functions arenot normally needed by the typical application. They are provided for use in special
circumstances involving multiple VXI mainframes and multiple processes running the measurements in
those mainframes. The typical application should simply usee1432_init_measureinstead.

These functions take the place of calling the (much simpler)e1432_init_measurefunction. Please see the
documentation one1432_init_measurefor more detail on what happens when a measurement is started.

The five functionse1432_init_measure_slave_setup, _slave_middle, _slave_finish, _master_setup, and
_master_finishare used for making measurements for the special case of multiple groups of modules shar-
ing common TTLTRG lines for clocking and sync.

These groups will each run in a separate UNIX (NT?) process (see below if you care why).

The application program must establish interprocess communications to allow these five functions to be
called in the following order.

One process controlling one of the module groups must be designated as the "Master". This should be the
group that is at the head of the TTL trigger line routing. VXI mainframe extenders currently have a one
way routing of TTL lines between mainframes so it is important to watch directions and which group is
driving TTL sync.

TIME

V
"Master process" | "Slave process"

|
|
+--------------------+
. |
. --------------------------------
. |e1432_init_measure_slave_setup|
. --------------------------------
. |

+---------------------------------------+
| .

--------------------------------- .
|e1432_init_measure_master_setup| .
--------------------------------- .

| .

80 E1432

E1432_INIT_MEASURE_MASTER_FINISH(3) E1432_INIT_MEASURE_MASTER_FINISH(3)

+---------------------------------------+
. |
. ---------------------------------
. |e1432_init_measure_slave_middle|
. ---------------------------------
. |

+---------------------------------------+
| .

---------------------------------- .
|e1432_init_measure_master_finish| .
---------------------------------- .

| .
+---------------------------------------+

. |

. ---------------------------------

. |e1432_init_measure_slave_finish|

. ---------------------------------

Why is this so complex? Why use separate processes? Normally you wouldn’t. But some applications
might want to deal with separate channel groups using separate processes, and still provide for all of the
modules in all of the groups running synchronously. This is what is needed to deal with that.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_init_measure, e1432_arm_measure_master_finish, e1432_set_mmf_delay

E1432 81

E1432_INSTALL(3) E1432_INSTALL(3)

NAME
e1432_install − Install firmware into E1432 RAM

SYNOPSIS
SHORTSIZ16 e1432_install(SHORTSIZ16 modCount, SHORTSIZ16 *logAddrList,

LONGSIZ32 flags, const void *path);

DESCRIPTION
e1432_installinstalls firmware into E1432 RAM. This must be done after powerup or a hard reset. Until
this is done, the module is unable to run a measurement or set or query parameter values.

modCountspecifies how many different modules to install firmware into. The installation is done in paral-
lel as much as possible, so it is faster to calle1432_installand give it sev eral modules, rather than call
e1432_installonce for each module.

logAddrListis an array of VXI logical addresses. This array must be as long asmodCount. Firmware will
be installed in each E1432 module specified by this array.

flagsis used to modify the installation process. This value is a bit field, with each bit signifying something
different. Normally,flagsshould be specified as zero. Values that are understood are:

E1432_INSTALL_FASTEST This performs no handshaking while downloading the firmware.This
fails except when the E1406 command module is being used.

E1432_INSTALL_FASTER This downloads the first 4K block of firmware with handshaking, and
then uses no handshaking for the rest of the firmware.

E1432_INSTALL_FAST This is similar toE1432_INSTALL_FASTER, but it uses a slower
transfer method for non-handshaked transfers.

E1432_INSTALL_FROM_MEM
Normally, e1432_installinstalls data from a file into the E1432 module.
If this bit is set, then insteade1432_installinstalls data from a passed-in
memory buffer specified by thepath parameter. See the "DOWN-
LOADING FROM A BUFFER" section below.

E1432_INSTALL_SYSCALLS This specifies that thee1432monprogram is already running, and the
installed firmware should wait for the monitor to acknowledge each
debug print (and all other system calls).

None of theFAST flags above will work over a fast interface, such as MXI or embedded V/743.

path specifies the name of a file that contains the firmware to download (except when
E1432_INSTALL_FROM_MEM is set in theflagsparameter; see section "DOWNLOADING FROM A
BUFFER" below). Normally, this path should be set to/opt/e1432/lib/sema.bin . This binary file
is an exact image of the firmware that will execute in the E1432 substrate 96002.

DOWNLOADING FROM A BUFFER
Normally, e1432_installopens a file and downloads the contents of the file to the E1432. This is generally
the easiest and most efficient way to perform the download. However, in special circumstances (for exam-
ple, when controlling an E1432 from an E1485), it may be inconvenient to use a file. To allow for this pos-
sibility, the E1432_INSTALL_FROM_MEM bit in theflagsparameter may be used. This bit indicates
that a file will not be used for downloading, and that thepath parameter is not a filename but is instead a
pointer to a structure of typee1432_install_from_mem. This structure has two fields: annbytefield which

82 E1432

E1432_INSTALL(3) E1432_INSTALL(3)

specifies the number of bytes to install, and adatafield which is a pointer to the actual data.

It is up to the application to set these two fields in the structure pointed to bypath. In the case of an E1485
program, the contents of/opt/e1432/lib/sema.bin could be converted to ASCII, embedded into
the source code of the E1485 program, anddatacould be set to point to this embedded array. Note that this
would make the E1485 program quite large.

IS DOWNLOADING NECESSARY?
The process of downloading code into the E1432 module usually takes more than five seconds. Since it is
so slow, an application programmer generally wants to download code only when absolutely necessary.
The best way to tell if the download is necessary is to use thee1432_get_hwconfigfunction. If
e1432_get_hwconfigreturns an error, then downloading is necessary. Ife1432_get_hwconfigis successful,
then downloading is generally not necessary. The structure returned by a successful call to
e1432_get_hwconfigcontains a field that specifies the firmware revision of the code running in the E1432
module.

Here is a typical code fragment to deal with downloading, which will download code into the E1432 only if
needed:

struct e1432_hwconfig hwconfig;
SHORTSIZ16 laddr[E1432_MOD_MAX];
SHORTSIZ16 nmod;

nmod = 1;
laddr[0] = 8;

if (e1432_print_errors(0) < 0)
return -1;

status = e1432_get_hwconfig(nmod, laddr, hwconfig);
if (e1432_print_errors(1) < 0)

return -1;
if (status < 0)

if (e1432_install(nmod, laddr, 0, "/opt/e1432/lib/sema.bin") < 0)
return -1;

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_assign_channel_numbers, e1432_get_hwconfig, e1432_init_io_driver

E1432 83

E1432_INSTALL_FILE(3) E1432_INSTALL_FILE(3)

NAME
e1432_install_file − Specify the location of the downloadable

SYNOPSIS
SHORTSIZ16 e1432_install_file(const char *install_file, SHORTSIZ16 from_mem)

DESCRIPTION
e1432_install_fileinforms the library of the location of the 96000 downloadable firmware file.

install_file must point to a string which is the location of the 96000 downloadable firmware file, such as
/opt/e1432/lib/sema.bin . The library also looks in the same directory for the Octave SCA DSP
downloadable,soct.bin , so this function is useful for specifying its location.install_file is later used as
the location of the 96000 downloadable firmware file when thee1432_installfunction is called thepath
string pointer is set to null.

install_file is also set to the value ofpathwhene1432_installis called withpatha valid string.

from_memshould be set to 0. Behavior is undefined otherwise.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_meas, e1432_install

84 E1432

E1432_OCTAVE_CTL(3) E1432_OCTAVE_CTL(3)

NAME
e1432_octave_ctl − Send Octave measurement control command

SYNOPSIS
SHORTSIZ16 e1432_octave_ctl(E1432ID hw, SHORTSIZ16 ID, SHORTSIZ16 cmd)

DESCRIPTION
e1432_octave_ctlsends an Octave measurement command to the modules(s) selected.

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
TheID parameter is used only to identify which module the function applies to.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to send the command to.

cmd must be one of E1432_OCTAVE_CTL_STOP, E1432_OCTAVE_CTL_RESTART or
E1432_OCTAVE_CTL_CONTINUE .

e1432_octave_ctlis currently inactive.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_avg_mode, e1432_set_octave_hold_mode,
e1432_set_octave_start_freq, e1432_set_octave_stop_freq, e1432_set_octave_int_time,
e1432_set_octave_time_const, e1432_set_octave_time_step, e1432_get_octave_blocksize,
e1432_get_current_data

E1432 85

E1432_PRE_ARM_MEASURE(3) E1432_PRE_ARM_MEASURE(3)

NAME
e1432_pre_arm_measure − Manually move E1432s from PRE_ARM to IDLE state

SYNOPSIS
SHORTSIZ16 e1432_pre_arm_measure(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 wait_after)

DESCRIPTION
e1432_pre_arm_measuremoves all modules in the group from thePRE_ARM state to theIDLE state.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

This function performs a "manual pre_arm", and does not need to be called unless the group’s pre-arm
mode is E1432_MANUAL_ARM. This function is called aftere1432_init_measure. This function waits
for all modules to be in thePRE_ARM state, before proceeding further, and it will return an error if this
state is not reached after a limited time.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. If the measurement involves more than one module, it is mandatory that agroup
ID be used, rather than achannel ID.

wait_after determines whether this function will wait for the module to actually move beyond the
PRE_ARM state. If zero, the function does not wait; if non-zero, the function waits.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_init_measure, e1432_set_pre_arm_mode, e1432_arm_measure

86 E1432

E1432_PRESET(3) E1432_PRESET(3)

NAME
e1432_preset − Preset parameters to default values

SYNOPSIS
SHORTSIZ16 e1432_preset(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
e1432_presetsets a single channel or a group of channels back to initial default values.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID identifies a group of channels or a single channel to be preset to initial values.

This function is called bye1432_assign_channel_numbersto preset all parameters to their default values.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_assign_channel_numbers

E1432 87

E1432_PRINT_ERRORS(3) E1432_PRINT_ERRORS(3)

NAME
e1432_print_errors − Enable/disable function error printout

SYNOPSIS
SHORTSIZ16 e1432_print_errors(SHORTSIZ16 enable)

DESCRIPTION
e1432_print_errorsenables/disables the printing of error messages when any function returns an error.

If the library is used in a host computer environment, the errors are output to stderr (normally the console
screen). If the library is used in the E1485A environment, the error messages are output to a terminal con-
nected to the RS-232 port available on this module.

It is normal while developing code to include a call toe1432_print_errorsenabling error printing early in
the code. Once the code has been fully debugged, you may choose to remove this call.

enableis a boolean, with the value being either nonzero (to enable printing) or zero (to disable printing).

RESET VALUE
After a reset,enableis set to0. Error printing is disabled.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_trace_level

88 E1432

E1432_READ_RAW_DAT A(3) E1432_READ_RAW_DAT A(3)

NAME
e1432_read_raw_data − Read raw data from E1432 channel
e1432_read_float32_data − Read scaled float data from E1432 channel
e1432_read_float64_data − Read scaled float data from E1432 channel

SYNOPSIS
SHORTSIZ16 e1432_read_raw_data(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 which, void *buffer,
LONGSIZ32 size,
struct e1432_trailer *trailer,
LONGSIZ32 *actualCount)

SHORTSIZ16 e1432_read_float32_data(E1432ID hw, SHORTSIZ16 ID,
SHORTSIZ16 which, FLOATSIZ32 *buffer,
LONGSIZ32 size,
struct e1432_trailer *trailer,
LONGSIZ32 *actualCount)

SHORTSIZ16 e1432_read_float64_data(E1432ID hw, SHORTSIZ16 ID,
SHORTSIZ16 which, FLOATSIZ64 *buffer,
LONGSIZ32 size,
struct e1432_trailer *trailer,
LONGSIZ32 *actualCount)

DESCRIPTION
e1432_read_raw_datareturns a block of raw,UN-scaled data.buffershould be either a pointer to SHORT-
SIZ16, LONGSIZ32, or FLOATSIZ32, depending upon the setting of the data size (see
e1432_set_data_size).

e1432_read_float32_datareturns a block of 32 bit floating point data. The data is properly scaled to volts
(or picoCoulombs if the input channel is in charge mode).

e1432_read_float64_datareturns a block of 64 bit floating point data. The data is properly scaled to volts
(or picoCoulombs if the input channel is in charge mode).

e1432_read_raw_data, e1432_read_float32_dataande1432_read_float64_datacan be called with either a
group ID or a channel ID. If called with a group ID the buffer must be large enough to hold all data from
all channels in the group. These functions may returnERR1432_BUS_ERRORif there is no data ready,
so usee1432_block_availableto determine data readiness before calling a read data function. These func-
tions will attempt to read one blocksize worth of data as set bye1432_set_blocksize.

If channel IDs are used, any of these functions has to be called as many times as there are active channels in
the group for which the data acquisition has just been performed. Also, the channels MUST be called in
order of the channel list used to create the group. The channel ID does not really specify which channel’s
data to read - it just indicates which module to read from, and the module sends the next active channel.
Each channel must be read completely before the next channel data is available. All these restrictions are
dealt with by using a group ID instead of channel ID.

These data transfers are performed using the VME bus. If the data port is set to Local Bus, there is no need
to read data via VME, and these functions should not be used at all.

If e1432_set_append_statushas been used to turn on the status trailer, then a trailer is read from the module
after reading the block of data. There are two ways to get this trailer data.

One way is to have the trailer appended to the end of each data block. If this is done, then each block of
data will have a trailer of eight 32-bit words appended to it. The data buffer must be large enough to acco-
modate the additional data. Thesizethat is passed to this function should be either 8 or 16 larger, for each
channel, than it would otherwise be. If the current data size (as selected bye1432_set_data_size) is

E1432 89

E1432_READ_RAW_DAT A(3) E1432_READ_RAW_DAT A(3)

E1432_DAT A_SIZE_16, then 16 should be added to the size. Otherwise, 8 should be added to the size.
This will ensure that the correct amount of data is read after each data block. The reason that the number
varies is that the trailer information is always in the same format, regardless of the current data size setting.

The other way to get trailer data is to use thetrailer parameter. If this is done, then thesizeshould NOT try
to account for the additional trailer data. Thetrailer parameter should point to an array ofe1432_trailer
structures, one for each channel whose data will be read by this function.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is the ID of a group or single channel.

whichspecifies what type of data to read.E1432_TIME_DAT A causes time data to be read.

E1432_FREQ_DAT Acauses the results of an FFT of the time data to be read.

E1432_RESAMP_DAT Acauses resampled time data to be read. For this data to be available, the resam-
pling calculation must be enabled by e1432_set_calc_data.

E1432_OCTAVE_DAT A causes Octave date to be read. For this data to be available, Octave measure-
ments must be turned on vie1432_set_octave_mode. E1432_OCTAVE_DAT A is not valid for
e1432_read_raw_datacalls. Octave data is in mean-squared form. A square root must be taken to make it
RMS.

E1432_ORDER_DAT A causes the results of an FFT of the resampled time data (order data) to be read.
For this data to be available, the order calculation must be enabled by e1432_set_calc_data.

NOTE: The frequency data and order data are normally sent up as complex data, real and imaginary pairs
for each point. Since the FFT is a Real Valued Transform (RVT) onblocksizepoints of input time data (or
resampled time data in the case of order calculations), the result normally would have one extra point in it
(blocksize/2 + 1), called the Fs/2 point which is necessary if an inverse FFT is to be done in the host. To
save buffer space in the E1432, the real part of the Fs/2 point is put into the imaginary part of the DC fre-
quency bin (first point in the block). This is possible because the imaginary parts of the DC point the Fs/2
point are zero. The result of this packing isblocksize/2 complex pairs, orblocksizepoints. When one of
the averaging modes is turned on withe1432_set_avg_modethat cause only magnitude squared data to be
passed up, the resulting number of points isblocksize/2. The Fs/2 information is lost with this type of aver-
aging.

buffer is a pointer to the array for returned data.

size is the size, in data points, ofbuffer. If size is less than the block size set withe1432_set_blocksize,
some channel data will be left on the E1432 and will corrupt future reads.

Note: always make this size less than or equal to the actual allocated memory forbufferor the function may
overrun yourbuffer.

trailer is a pointer to a structure of typestruct e1432_trailer. This parameter is ignored unless append sta-
tus is on (seee1432_set_append_status). If append status is on, and if this parameter is non-NULL, and if
the size is equal to theblocksizeas specified bye1432_set_blocksize, then thetrailer structure is filled in
with trailer data. If theID is a group ID, thentrailer must point to an array of structures, one for each chan-
nel in the group.

actualCountis a pointer to a long integer. It is set to the actual number of data points transferred into

90 E1432

E1432_READ_RAW_DAT A(3) E1432_READ_RAW_DAT A(3)

buffer. It will always be less than or equal tosize.

Data Transfer Sizes

Function Data size Bytes per data point

e1432_read_raw_data 16 2

e1432_read_raw_data 32 4

e1432_read_float32_data any 4

e1432_read_float64_data any 8

Data size is set usinge1432_set_data_size.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_scale, e1432_set_append_status, e1432_set_data_size, e1432_set_data_port

E1432 91

E1432_READ_I2C(3) E1432_READ_I2C(3)

NAME
e1432_read_i2c − Read from input I2C port
e1432_write_i2c − Write to input I2C port

SYNOPSIS
SHORTSIZ16 e1432_read_i2c(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 addr, SHORTSIZ16 *value)
SHORTSIZ16 e1432_write_i2c(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 addr, SHORTSIZ16 value)

DESCRIPTION
This is a low-level function which will not normally be needed by an application programmer. These func-
tions are not necessary for the E3242A Charge Break-Out Box, nor for the E3243A Microphone Break-Out
Box.

To use the input channel on an E1432 module, a cable must connect a "break-out" box to the small connec-
tors on the front panel of the E1432. Several break-out boxes are available. Some are passive, and provide
only a direct connection from a BNC connector to the E1432 input channel. Some are "smart", and can
perform some analog signal conditioning before sending the signal to the E1432 input channel.

The smarter break-out boxes use I2C to communicate setup information between the E1432 module and the
break-out box. For the most part, the E1432 module has built-in knowledge of how to talk to a break-out
box, and will encapsulate the functionality of the break-out box. However, future break-out boxes might
provide functionality that the E1432 module is unaware of. In this case, it may be useful for a host program
to directly program the break-out box by reading and writing on the I2C bus.e1432_read_i2cand
e1432_write_i2cprovide this capability.

e1432_read_i2cwill read any I2C address on the I2C bus attached to a particular SCA (theID identifies
which SCA).

e1432_write_i2cwill write any value to any I2C address on the I2C bus attached to a particular SCA.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. Each SCA in an E1432 module can have a different break-out box attached.
The ID identifies which break-out box to talk to - the ID of any channel of an SCA identifies the break-out
box attached to that SCA.

addr specifies the I2C address to talk to. I2C addresses contain seven bits of address, which should be
shifted up one bit so that the bottom bit of the address is always zero. The bits above the bottom eight are
ignored.

When reading,value is a pointer to a 16-bit integer which will be filled in with the value read. The value
read is really only an 8-bit quantity.

When writing,value is a 16-bit integer which specifies the value to write. Only the bottom eight bits are
actually written.

RESET VALUE
None.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

92 E1432

E1432_READ_REGISTER(3) E1432_READ_REGISTER(3)

NAME
e1432_read_register − Read 16-bit register from a single E1432
e1432_write_register − Write 16-bit register to a single E1432
e1432_read32_register − Read 32-bit register from a single E1432
e1432_write32_register − Write 32-bit register to a single E1432

SYNOPSIS
SHORTSIZ16 e1432_read_register(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 regOffset, SHORTSIZ16 *data)
SHORTSIZ16 e1432_write_register(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 regOffset, SHORTSIZ16 data)
SHORTSIZ16 e1432_read32_register(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 regOffset, LONGSIZ32 *data)
SHORTSIZ16 e1432_write32_register(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 regOffset, LONGSIZ32 data)

DESCRIPTION
e1432_read_registerreads the contents of a 16-bit register of an E1432 module, identified by the ID from
any one of its channels.

e1432_write_registerwrites data to a particular 16-bit register of an E1432 module, identified by the ID
from any one of its channels.

e1432_read32_registerreads the contents of a 32-bit register of an E1432 module, identified by the ID
from any one of its channels.

e1432_write32_registerwrites data to a particular 32-bit register of an E1432 module, identified by the ID
from any one of its channels.

Normally, these functions trap bus errors that might occur while reading or writing a register, and return the
error ERR1430_BUS_ERROR if a bus error occurs. This behavior can be changed by using the
e1432_set_try_recoverfunction.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is the ID of a single channel which is used to identify the module.

regOffsetis the offset of the register relative to the base address of the E1432. Register offsets have defines
of the formE1432_<register_name>_REG in the filee1432.h. For instance,E1432_VXI_ID_REG is at
register offset 0. The list of E1432 registers, and their detailed description, may be found in appendix A of
the HP E1432A users’s guide.

data is the value of the data, to be read from, or to be written into, the register.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_register_address, e1432_set_try_recover

E1432 93

E1432_REENABLE_INTERRUPT(3) E1432_REENABLE_INTERRUPT(3)

NAME
e1432_reenable_interrupt − Reenable interrupts

SYNOPSIS
SHORTSIZ16 e1432_reenable_interrupt(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
When VME interrupts are being used, an E1432 module will do a VME interrupt when an event matching
the current interrupt mask occurs. Once it has done this interrupt, the module will not do any more VME
interrupts until re-enabled withe1432_reenable_interrupt. Normally, the last thing a host computer’s inter-
rupt handler should do is calle1432_reenable_interrupt.

Events that would have caused an interrupt, but which are blocked becausee1432_reenable_interrupthas
not yet been called, will be saved. Aftere1432_reenable_interruptis called, these saved events will cause
an interrupt, so that there is no way for the host to "miss" an interrupt. However, the module will only do
one VME interrupt for all of the saved events, so that the host computer will not get flooded with too many
interrupts.

For things like "E1432_IRQ_BLOCK_READY", which are not events but are actually states, the module
will do an interrupt aftere1432_reenable_interruptonly if the state is still present. This allows the host
computer’s interrupt handler to potentially read multiple scans from an E1432 module, and not get flooded
with block ready interrupts after the fact.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

RESET VALUE
None.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_interrupt_mask, e1432_intr(5)

94 E1432

E1432_RESET(3) E1432_RESET(3)

NAME
e1432_reset − Reset (group of) E1432 modules

SYNOPSIS
SHORTSIZ16 e1432_reset(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
e1432_resetresets the (group of) channel(s) specified byID. This is a hard reset done by setting the
RESET bit in the VXI control register. This function should not be needed by normal applications.

To simply restore default settings to a group of channels, use thee1432_presetfunction instead.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_preset

E1432 95

E1432_RESET_LBUS(3) E1432_RESET_LBUS(3)

NAME
e1432_reset_lbus − Reset or enable Local Bus
e1432_get_lbus_reset − Return reset status of local bus

SYNOPSIS
SHORTSIZ16 e1432_reset_lbus(E1432ID hw, SHORTSIZ16 ID, SHORTSIZ16 state)
SHORTSIZ16 e1432_get_lbus_reset(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *state)

DESCRIPTION
e1432_reset_lbuscontrols the reset state of the Local Bus.E1432_RESET_LBUS_ONputs it into reset
andE1432_RESET_LBUS_OFFallows the Local Bus to function.

e1432_get_lbus_resetreturns the reset state of the Local Bus, into the location pointed to bystate.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

statemust be eitherE1432_RESET_LBUS_ONor E1432_RESET_LBUS_OFF.

At the start of a measurement that uses local bus, it is important to properly reset the local bus before start-
ing the measurement. Before resetting the local bus, make sure all E1432 modules are no longer running
any previous measurement, by callinge1432_reset_measure. Then the local bus interface on all VXI cards
must be reset, and then they must all be un-reset. The order in which the cards must be reset and un-reset is
important. After all that, the measurement can be started withe1432_init_measure.

RESET VALUE
After a reset the Local Bus is set toE1432_RESET_LBUS_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_lbus_mode

96 E1432

E1432_RESET_MEASURE(3) E1432_RESET_MEASURE(3)

NAME
e1432_reset_measure − Reset current measure, move E1432s to TESTED

SYNOPSIS
SHORTSIZ16 e1432_reset_measure(E1432ID hw, SHORTSIZ16 ID)

DESCRIPTION
e1432_reset_measuremoves the E1432 measurement state machine to theTESTED state.

This function call is not normally needed becausee1432_init_measureprepares the modules for data gath-
ering.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. If the measurement involves more than one module, it is mandatory that agroup
ID be used, rather than achannel ID. Using a group ID guarantees that all modules in the group move syn-
chronously to theTESTED state.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_init_measure

E1432 97

E1432_SCA_DSP_DOWNLOAD(3) E1432_SCA_DSP_DOWNLOAD(3)

---- NOT FOR GENERAL USE ----

NAME
e1432_sca_dsp_download − Download program and data to SCA DSP(s)

SYNOPSIS
SHORTSIZ16 e1432_sca_dsp_download(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 length, LONGSIZ32 *ldata)

DESCRIPTION
e1432_sca_dsp_downloaddownloads program and optional data to an individual SCA DSP or a group of
SCA DSPs.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained by a call toe1432_create_channel_group, or
the ID of a single channel.

lengthis the size of the download data block to be sent.

ldata is a pointer to the 32 bit download data.

For E1433input channels, for hardware implementation reasons, this operation downloads to both channels
in a channel pair, such as channels 1 & 2. If both channels in the pair are included inID, the operation will
be performed only once on that channel pair.

As a 56002, aE1433input channel DSP initially expects 256 program words, to be loaded starting at P:0
and then executed. Iflengthis less than 256, NOPs will be appended to complete the download. If X:, Y:,
and/or higher P: memory are to be loaded, a secondary loader must be included in the initial 256 words to
properly place the additional download data.

Calling e1432_sca_dsp_downloadwith eitherlengthset to zero orldata set to NULL will result in the stan-
dard SCA DSP code being restored at the nexte1432_init_measurecall.

Since this function temporarily uses memory in the module which is also used for the arbitray source data,
this function must preceed the function calls to pre-load the arbitrary source buffers using
e1432_write_srcbuffer_data.

This function is not currently implemented for any other SCA DSPs.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise._NO_ID, if ID is not a valid channel or group
ID. _BUS_ERROR, if any of the underlying register accesses fail._BUFFER_TOO_SMALL , if the
internal buffer is too small to accomodatelength words. _SCA_FIRMWARE_ERROR and
_SCA_HOSTPORT_FAIL are symptomatic of the downloaded firmware behaving unexpectedly or the
wrong amount of download data being sent with respect to the downloaded secondary loader expectations.

SEE ALSO
e1432_dsp_exec_query

98 E1432

E1432_SELFTEST(3) E1432_SELFTEST(3)

NAME
e1432_selftest − Perform self test of hardware
e1432_install_file − Set self test module downloadable
e1432_set_diag_print_level − Set self test print level

SYNOPSIS
SHORTSIZ16 e1432_selftest(SHORTSIZ16 mods, SHORTSIZ16 *las,

SHORTSIZ16 tests, void *opts)
SHORTSIZ16 e1432_install_file(const char *fileName, SHORTSIZ16 from_mem)
SHORTSIZ16 e1432_set_diag_print_level(SHORTSIZ16 print_level)

DESCRIPTION
e1432_selftestperforms a selftest of the hardware. It returns 0 if all tests pass and a negative error code if
the self test fails.

e1432_install_filespecifies the module downloadable file used bye1432_selftestand should be called
beforee1432_selftest.

e1432_set_diag_print_levelsets the diagnostic output level ofe1432_selftestand should be called before
e1432_selftest.

modsis the number of modules to be tested.

las is the pointer to a logical address or array of logical addresses.

tests specifies the testing level. Valid values oftests are E1432_SELFTEST_BASIC,
E1432_SELFTEST_FULL, and E1432_SELFTEST_FULL_STD_IO. E1432_SELFTEST_BASIC
specifies fairly quick testing of basic functionality.E1432_SELFTEST_FULL specifies basic testing plus
additional testing using the module downloadable file specified with thee1432_install_filefunction.
E1432_SELFTEST_FULL_STD_IOspecifies basic testing, testing using the module downloadable, plus
testing assuming testing assuming 1 Volt Peak, 1 kHz sine on all input and tachometer channels and placing
1 Volt Peak, 1 kHz sine on source output for manual verification of source outputs.

opts should be either NULL or a pointer to a string describing the hardware configuration to be tested
against. This configuration string is a comma separated list of model and options. An example is
"E1432A,1DE,AYF" to specify an 8 channel E1432A with the tachometer option. The model number and
the options can be found on the serial number plate(s) on the right side of the module. Ifopts is NULL,
e1432_selftestwill test what it can find.

fileName points to a string which is the path to the module downloadable to be used in
E1432_SELFTEST_FULLandE1432_SELFTEST_FULL_STD_IOtesting.

from_memshould be set to 0.

print_level controlls the level of printing ine1432_selftest. A setting of 0 or lower completely disables
printouts. A setting of 1 results in only terse, failure messages. A setting of 2 causes printout of the testing
steps as well as detailed diagnostic messages. A setting of 3 or more is for printout used in the develop-
ment of thee1432_selftestcode itself and should not be used.

e1432_selftestunderlies the functionality of thehostdiagprogram.

It should be noted thate1432_selftestattempts to determine if portions of a module are broken. It is not
guaranteed to find all hardware problems. It isnota performance test or system verification test.

E1432 99

E1432_SELFTEST(3) E1432_SELFTEST(3)

Coverage
E1432A, E1433A, E1434A models.
Channel add/delete options.
ANM and ANC DRAM options as well as standard DRAM configurations.
AYF tachometer option and 1D4 source option.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

100 E1432

E1432_SEND_TACHS(3) E1432_SEND_TACHS(3)

NAME
e1432_send_tachs − Send raw tach times from master to slave modules

SYNOPSIS
SHORTSIZ16 e1432_send_tachs(E1432ID hw, SHORTSIZ16 groupID, SHORTSIZ16 tachID,

unsigned long *buffer, int size, LONGSIZ32 *count)

DESCRIPTION
e1432_send_tachsgets the available new raw tachometer times from the master module and passes them on
to all the slave modules in the order tracking mode in a multi-module system. Optionally, it can also return
the values of these raw tach times into a user buffer. This function is used to allow the module with the tach
board to be the master module, providing raw tach times to all other modules in the system. These tach
times are necessary for calculating resampled time data on slave modules.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

groupID is the ID of a group of modules that was obtained with a call toe1432_create_channel_group.

tachID is the ID of asingletach channel.

buffer is a pointer to a buffer that will recieve the raw tach times. If this isNULL , no tach times will be
returned, but they will be transmitted to the slave module(s). If this pointer is not NULL, thesizepasses the
size ofbuffer.

sizeis the size ofbuffer. Ignored ifbuffer is NULL .

countis a pointer the location into which the number of raw tach times transferred is placed.

The master module with the tach board in the group must have been enabled by a call to
e1432_set_trigger_master. This call puts all other modules in the group into slave mode. Each time
e1432_send_tachsis called, all raw tach times collected by the master module since the last call to the
function are sent to the slave module(s) in a system. This function can be called at any time, but should be
called relatively frequently, since it serves to "sync" all of the modules in a group doing resampling.

NOTE: Once this function is called the first time either it or the functione1432_get_raw_tachsmust
be called regularly to read tach values out of the module. If tach times are not read out often enough,
a tach buffer overflow will happen, which will overwrite the internal tach buffer and cause
e1432_block_availableto return ERR1432_TACH_BUFFER_OVERFLOW .

RESET VALUE
Not applicable.

RETURN VALUE
Returns 0 if successful, a (negative) error number otherwise. The error,ERR1432_NO_GROUP, will be
returned ifgroupID is not a group ID.ERR1432_NO_CHANNEL will be returned if a trigger master has
not been set for the group,groupIDand when thetachID is not a valid tach channel.

SEE ALSO
e1432_set_trigger_master, e1432_set_data_mode, e1432_get_raw_tachs

E1432 101

E1432_SEND_TRIGGER(3) E1432_SEND_TRIGGER(3)

NAME
e1432_send_trigger − Send trigger from master to slave modules

SYNOPSIS
SHORTSIZ16 e1432_send_trigger(E1432ID hw, SHORTSIZ16 groupID)

DESCRIPTION
e1432_send_triggergets the data FIFO index of a trigger from the master module and passes it on to all the
slave modules in the RPM arming/trigger mode in a multi-module system. This is used to allow the module
with the tach board to be the master module, providing a trigger to all other modules in the system.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

groupID is the ID of a group of modules that was obtained with a call toe1432_create_channel_group.

The master module with the tach board in the group must have been enabled by a call to
e1432_set_trigger_master. This call puts all other modules in the group into slave mode. Each time the
master module notices a trigger in the RPM arming/trigger mode, the data FIFO index of the trigger is
saved and theE1432_IRQ_TRIGGER bit is set in theE142_IRQ_STATUS2_REGregister. This bit can
used to enable an interrupt or can be polled by the host computer. This scheme only works when the data
mode has been set toE1432_DAT A_MODE_OVERLAP_BLOCK by a call toe1432_set_data_mode.
The following fragment of code illustrates how to poll for a master trigger and pass it on to the slaves.

/* <masterChan> is a channel in the master module, <groupID> is a group
* ID that includes the channel, <masterChan>, and at least one channel
* from each of the slave modules.
*/

error = e1432_set_trigger_master(hw, masterChan,
E1432_TRIGGER_MASTER_ON);

if(error) return error;

......

do /* wait for trigger from master */
{

error = e1432_read_register(hw, masterChan,
E1432_IRQ_STATUS2_REG, &status);

if(error) return error;
}while((status & E1432_IRQ_TRIGGER) == 0);

error = e1432_send_trigger(hw, groupID);
if(error) return error;

RESET VALUE
Not applicable.

RETURN VALUE
Returns 0 if successful, a (negative) error number otherwise. The error,ERR1432_NO_GROUP, will be
returned ifID is not a group ID.ERR1432_NO_CHANNEL will be returned if a trigger master has not
been set for the group,ID.

SEE ALSO
e1432_set_trigger_master, e1432_set_data_mode

102 E1432

E1432_SET_ACTIVE(3) E1432_SET_ACTIVE(3)

NAME
e1432_set_active − Set a group or channel active
e1432_get_active − Get group or channel active state

SYNOPSIS
SHORTSIZ16 e1432_set_active(E1432ID hw, SHORTSIZ16 ID,SHORTSIZ16 state)
SHORTSIZ16 e1432_get_active(E1432ID hw, SHORTSIZ16 ID,SHORTSIZ16 *state)

DESCRIPTION
An application can use the E1432 interface library to communicate with several E1432 modules, each of
which has multiple channels. Obviously, the application will not always want to use all of the channels.
Thee1432_set_activefunction is used to specify which of the channels the application wants to use.

Channels that are "inactive" are not used at all in a measurement. The active/inactive status of a channel
can’t be changed while a measurement is running. For an input channel, if it is inactive then it will not
assert trigger, and its data will not get put into the FIFO. For a tach channel, if it is inactive then the RPM
of that channel is not monitored and the raw tach times can’t be read by the host computer. For a source
channel, if it is inactive then the channel will not produce an output signal.

Changing an input channel from active to inactive, or from inactive to active, will abort any currently run-
ning measurement. Changing a source channel from inactive to active will not start a source, only
e1432_init_measuredoes that. However, changing a source channel from active to inactive stops the source
immediately. Changing a tach channel from active to inactive, or from inactive to active, will have no effect
until the start of the next measurement.

Compare this withe1432_set_enable, which can enable or disable data from a input channel while a mea-
surement is running.

e1432_get_activereturns the state of a channel or group.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

If the ID is a channel ID, that one channel is set tostate.

The state can be either E1432_CHANNEL_ON, E1432_CHANNEL_OFF, or
E1432_CHANNEL_MAYBE. If state is E1432_CHANNEL_MAYBE, then source channels are set to
E1432_CHANNEL_OFF, while input and tach channels are set to E1432_CHANNEL_ON.

A call to e1432_create_channel_groupautomatically calls e1432_set_activeusing parameter
E1432_CHANNEL_MAYBE for the new group so in the simple case of one group, the programmer never
needs to calle1432_set_active.

Unlike the E1432 library, in the E1431 library calling this function sets all channels in each module to
E1431_CHANNEL_OFF, and then sets the specified channels tostate. This "feature" is undesirable and is
not duplicated in the E1432 library. The E1431 library does not have a E1431_CHANNEL_MAYBE
parameter.

RESET VALUE
See above.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 103

E1432_SET_ACTIVE(3) E1432_SET_ACTIVE(3)

SEE ALSO
e1432_create_channel_group, e1432_set_enable, e1432_e1431_diff

104 E1432

E1432_SET_AMP_SCALE(3) E1432_SET_AMP_SCALE(3)

NAME
e1432_set_amp_scale − Set source amplitude scale of E1432 channels
e1432_get_amp_scale − Get current source amplitude scale of E1432 channels

SYNOPSIS
SHORTSIZ16 e1432_set_amp_scale(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 amp_scale)
SHORTSIZ16 e1432_get_amp_scale(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *amp_scale)

DESCRIPTION
e1432_set_amp_scalesets the source amplitude scale factor, of a single channel or group of channelsID, to
the value given inamp_scale.

e1432_get_amp_scalereturns the current value of the source amplitude scale factor, of a single channel or
group of channelsID, into a memory location pointed to byamp_scale.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

amp_scaleis the amplitude scale factor, which must be between zero and one.

For input channels, amplitude scale is not used.

For source channels, the actual source amplitude generated is equal to the full-scale range (set by
e1432_set_range) multiplied by the amplitude scale factor. Therangespecifies an overall maximum signal
level (typically on a range DAC reserved for this purpose) which can’t be changed instantaneously during
output. Theamplitude scale factorhas finer resolution and can be adjusted instantaneously during output.

For tach channels, neither range nor amplitude scale are used.

RESET VALUE
After a reset, the sourceamp_scaleis set to one.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_range, e1432_get_amp_scale_limits

E1432 105

E1432_SET_ANALOG_INPUT(3) E1432_SET_ANALOG_INPUT(3)

NAME
e1432_set_analog_input − Set all analog input parameters

SYNOPSIS
SHORTSIZ16 e1432_set_analog_input(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode, SHORTSIZ16 source,
SHORTSIZ16 state, SHORTSIZ16 coupling,
FLOATSIZ32 range)

DESCRIPTION
e1432_set_analog_inputsets many of the parameters associated with the analog input section of an E1432
or group of E1432s, effectively combining a number of individual parameter function calls. Please refer to
the documentation for the individual parameter functions for more specific information.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

mode determines the input mode in the front end. This parameter may also be set with
e1432_set_input_mode. Changing the input mode for one channel causes the input mode for all channels
within that SCA to change. Seee1432_set_input_modefor more details.

sourceselects the input to the ADC.E1432_INPUT_HIGH_NORMAL selects the front panel connector.
E1432_INPUT_HIGH_GROUNDED grounds the ADC input.E1432_INPUT_HIGH_CALIN selects
the module’s CALIN line.E1432_INPUT_HIGH_BOB_CALIN selects the module’s CALIN line via the
cal connection in a break-out box.

This parameter may also be set withe1432_set_input_high.

statedetermines the state of the analog anti-alias filter in the front end. The analog anti-alias filters of the
E143x modules can’t be disabled, so this value must be set toE1432_ANTI_ALIAS_ANALOG_ON .
This parameter may also be set withe1432_set_anti_alias_analog.

couplingdetermines the AC or DC coupling mode of the input. UsingE1432_COUPLING_DCwill con-
nect the input directly to the amplifier.E1432_COUPLING_AC inserts a series capacitor between the
input and the amplifier. This parameter may also be set withe1432_set_coupling.

range is the full scale range in volts (or in picoCoulombs if the input mode is set to charge mode). Signal
inputs whose absolute value is larger than full scale will generate an ADC overflow error. The possible val-
ues forrangedepend on the type of channel being programmed. The actual range that is set will be the
nearest legal range value that is greater than or equal to the value specified by therangeparameter.

If the mode is set to voltage or ICP, this function usese1432_set_rangeto set the range. If the mode is set
to charge mode, this function usese1432_set_range_chargeto set the charge-amp range. If the mode is set
to microphone mode, this function usese1432_set_range_miketo set the microphone range.

The corresponding E1431 function takes an extra parameter to specify whether the ground path is floating
or grounded. This function does not take this parameter, since the E1432 hardware can’t set this program-
matically. Instead, there is a switch which controls the grounding, on the break-out box that connects to the

106 E1432

E1432_SET_ANALOG_INPUT(3) E1432_SET_ANALOG_INPUT(3)

inputs.

RESET VALUE
After a reset, mode is set to E1432_INPUT_MODE_VOLT. The source is set to
E1432_INPUT_SOURCE_BNC, stateis set toE1432_ANTI_ALIAS_ANALOG_ON , couplingis set to
E1432_COUPLING_DC, andrangeis set to the maximum legal value for each channel.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_anti_alias_analog, e1432_set_coupling, e1432_set_input_mode, e1432_set_input_high,
e1432_set_range, e1432_set_range_charge, e1432_set_range_mike.

E1432 107

E1432_SET_ANTI_ALIAS_ANALOG(3) E1432_SET_ANTI_ALIAS_ANALOG(3)

NAME
e1432_set_anti_alias_analog − Enable/disable analog anti-alias filter
e1432_get_anti_alias_analog − Get current state of analog anti-alias filter

SYNOPSIS
SHORTSIZ16 e1432_set_anti_alias_analog(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 state)
SHORTSIZ16 e1432_get_anti_alias_analog(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *state)

DESCRIPTION
Unfortunately, the analog anti-alias filters can’t be disabled on any input or source channels in the E143x
modules. Originally this function was going to be used to disable the analog anti-alias filters, but now this
function is essentially useless.

Seee1432_set_anti_alias_digitalfor disabling the digital anti-alias filters, whichcanbe done.

If this function is called, the parameters must obey the following:

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained by a call toe1432_create_channel_group, or
the ID of a single channel.

statemust be set toE1432_ANTI_ALIAS_ANALOG_ON , otherwise an error is generated.

RESET VALUE
After a reset,stateis set toE1432_ANTI_ALIAS_ANALOG_ON .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_create_channel_group, e1432_set_analog_input, e1432_set_anti_alias_digital

108 E1432

E1432_SET_ANTI_ALIAS_DIGITAL(3) E1432_SET_ANTI_ALIAS_DIGITAL(3)

NAME
e1432_set_anti_alias_digital − Enable/disable digital anti-alias filter
e1432_get_anti_alias_digital − Get current state of digital anti-alias filter

SYNOPSIS
SHORTSIZ16 e1432_set_anti_alias_digital(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 state)
SHORTSIZ16 e1432_get_anti_alias_digital(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *state)

DESCRIPTION
e1432_set_anti_alias_digitalenables or disables the digital anti-alias filter, of a single channel or group of
channelsID, depending on the value given instate. The analog counterpart to the digital anti-alias filter is
controlled with another function,e1432_set_anti_alias_analog.

e1432_get_anti_alias_digitalreturns the current state of the digital anti-filter, of a single channel or group
of channelsID, into a memory location pointed to bystate.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

statedetermines the state of the digital anti-alias filter.

E1432_ANTI_ALIAS_DIGITAL_ON enables the digital anti-alias filters. These filters are elliptic IIR fil-
ters, which provide a very flat pass-band and very good stop-band attenuation. These are the default filters.

E1432_ANTI_ALIAS_DIGITAL_OFF disables the digital anti-alias filters.

E1432_ANTI_ALIAS_DIGITAL_BES enables the use of "Bessel" anti-alias digital filters. These filters
are IIR digital filters which have nearly linear phase and very little overshoot and ringing. For this reason,
these filters are good for doing time-domain measurements. However, these filters have sev eral drawbacks
when used for frequency-domain measurements. These filters cut the bandwidth (the 3-dB point) of a mea-
surement to roughly half of what it would be with the elliptical filters, they provide only about 70 dB of
alias rejection, and they are not nearly as flat in the frequency domain as the elliptical filters.

When usingE1432_ANTI_ALIAS_DIGITAL_BES , the actual 3-dB frequency of the data is roughly half
of the span setting set bye1432_set_span. The effective data rate is still 2.56 times the span setting. It may
be useful to increase the oversample rate by a factor of two using thee1432_set_decimation_oversample.
This will not change the 3-dB frequency of the data, but it will increase the effective data rate to 5.12 times
the span setting, doubling the amount of data acquired in a given amount of time.

Changing the input digital filters while a measurement is running will stop the measurement.

For input channels, disabling the digital filters results in data that is not alias-protected in the frequency
domain, and therefore this is not usually a good idea for input channels. For source channels, disabling the
digital filters results in an output signal that may have high-frequency components in it. For tach channels,
there is no digital filter and this function returns an error.

The E1432 and E1433 input SCAs support this parameter to control the digital filtering done by the DSP
chip in the SCAs. However, note that this enables and disablesonly the decimation digital filters. It does
not disable or change the digital filter that is built into the Delta-Sigma ADCs (there is no way to disable
this filter and still have a working ADC), so there is still some digital filtering applied to the data even when
you attempt to completely disable the digital filters.

E1432 109

E1432_SET_ANTI_ALIAS_DIGITAL(3) E1432_SET_ANTI_ALIAS_DIGITAL(3)

On the E1432, this parameter applies to all channels on an SCA, and can’t be set separately for each chan-
nel. This restriction is not needed for the E1433.

Disabling the input digital filters is not usually a good idea because aliasing can result. Depending on the
application, it may be better to useE1432_ANTI_ALIAS_DIGITAL_BES , or the
e1432_set_decimation_undersampfunction may be useful instead. This function provides a different way
to prevent use of the digital anti-alias filters, by slowing down the ADC clock on the E1433.

Source 20-Bit Mode
The E1432/3/4 Option 1D4 single-channel source and the E1434 source normally have an interpolation dig-
ital filter immediately before the output DAC. This interpolation digital filter uses 16-bit input data, so nor-
mally the arb source data path is only 16 bits wide.

This interpolation digital filter can be disabled using thee1432_set_anti_alias_digitalfunction, resulting in
a 20-bit signal path (the DAC can accept 20-bit data words). When this interpolation filter is disabled, the
DAC output is not completely alias protected by the 25.6 kHz analog output filter. To get better alias pro-
tection, the analog output filter must be switched to 6.4 kHz (seee1432_set_filter_freq). If the source is in
random mode, the selected span should be 6.4 kHz or less. If the source is in arb mode, either the span
should be set to 6.4 kHz or less, or the arb data should be band-limited by the host computer to 6.4 kHz or
less.

There is only one 20-bit signal path for each 2-channel SCA in an E1434, on the first of the two SCA chan-
nels. Please refer to the module block diagram in the E1434A Users Guide.

To enable the 20-bit mode, use the following function call sequence:e1432_set_active,
e1432_set_source_mode, e1432_set_span, e1432_set_anti_alias_digital, e1432_set_filter_freq.

RESET VALUE
After a reset,stateis set toE1432_ANTI_ALIAS_DIGITAL_ON .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_anti_alias_analog, e1432_set_filter_freq, e1432_set_decimation_undersamp

110 E1432

E1432_SET_APPEND_STATUS(3) E1432_SET_APPEND_STATUS(3)

NAME
e1432_set_append_status − Enable/disable appending trailer onto data
e1432_get_append_status − Get current state of append trailer switch

SYNOPSIS
SHORTSIZ16 e1432_set_append_status(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 append)
SHORTSIZ16 e1432_get_append_status(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *append)

DESCRIPTION
e1432_set_append_statuscontrols the appending of a trailer of status data to each block of data. When
turned appending is turned on, each block of data transfered out of the E1432 module (either to Local Bus
or VME Bus) will have an extra eight 32-bit words appended to the end of the block. These extra words
contain status information about that block of data.

e1432_get_append_statusreturns the current state of append status, of a single channel or group of chan-
nelsID, into a memory location pointed to byappend.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

append selects whether or not status information is appended to a data block. Specifying
E1432_APPEND_STATUS_ONmeans that an extra block of status information is appended to the end of
each data block transferred.E1432_APPEND_STATUS_OFFdisables this feature. This parameter may
also be set withe1432_set_data_format.

WhenE1432_APPEND_STATUS_ONis selected, the user is responsible for reading the additional trailer
data from the module. There are two ways of doing this, both of which are explained on the read-data man-
ual pages (e1432_read_raw_data, e1432_read_float32_data, ande1432_read_float64_data).

One way is to add either 8 or 16 to the size parameter sent to one of the read-data functions
(e1432_read_raw_data, e1432_read_float32_data, ande1432_read_float64_data). If the current data size
(as selected bye1432_set_data_size) is E1432_DAT A_SIZE_16, then 16 should be added to the size. Oth-
erwise, 8 should be added to the size. This will ensure that the correct amount of data is read after each
data block. The reason that the number varies is that the trailer information is always in the same format,
regardless of the current data size setting. When reading the data, don’t forget to allocate enough room for
the extra trailer data!

The other way to get trailer data is to use thetrailer parameter. If this is done, then the size parameter to
the read data function should NOT try to account for the additional trailer data. Thetrailer parameter
should point to an array ofe1432_trailerstructures, one for each channel whose data will be read by this
function.

The format of the block of trailer information is given by thee1432_trailerstructure, which is defined in
the <e1432.h> include file. The structure contains eight fields, each of which is 32-bits wide. The eight
fields are:

E1432 111

E1432_SET_APPEND_STATUS(3) E1432_SET_APPEND_STATUS(3)

trig_corr, which specifies the time between the trigger event and the actual start of data in the block.
The time is normalized to the data sample interval. This time is not absolute. Other, fixed delays
are present, which depend on setup conditions. This field is a 32-bit float.

zoom_corr, which specifies the phase of the local oscillator at the start of the block. This is for
future use when zoom is implemented. It is currently filled with zero. This field is a 32-bit float.

rpm1, which specifies the RPM on the first tach channel in the module. This field contains the RPM
only if there is, in fact, a tach channel, and that tach channel is enabled withe1432_set_active. The
field contains zero otherwise. This field is a 32-bit float.

rpm2, which specifies the RPM on the second tach channel in the module. This field contains the
RPM only if there is, in fact, a second tach channel, and that tach channel is enabled with
e1432_set_active. The field contains zero otherwise. This field is a 32-bit float.

gap, which specifies the number of samples between the start of this scan and the start of the previ-
ous scan. For the very first scan of a measurement, the value is the number of samples between the
system sync and the start of the first block. This field is a 32-bit integer.

When doing a zoomed measurement (seee1432_set_zoom), the gap field is set to twice the number
of samples between the start of the scan and the start of the previous scan. This allows the time
between successive blocks to be calculated using:

delay = gap / (span * 2.56)
This works for both zoom and non-zoom, due to the differing definitions of span when doing a
zoomed measurement.

info, which is a bit-field containing information about the block. This field is a 32-bit integer. Here
are the bits that may be present:

E1432_TRAILER_INFO_NOT_UNDERRANGE , which indicates that at least some of
the data in this block is above the under-range threshold, so the next lower input range would
overload. If this bit is zero, then the next lower input range would not have overloaded due
to a differential overload.

E1432_TRAILER_INFO_OVERLOAD , which indicates that at least some of the data in
this block is overloaded and therefore may not accurately reflect the input signal. This bit is
set for both differential and common-mode overloads. For differential overloads, increasing
the input range may remove the overload.

E1432_TRAILER_INFO_OVERLOAD_COMM , which indicates that at least some of
the data in this block is overloaded due to a common-mode overload. If this bit is set, then
the aboveE1432_TRAILER_INFO_OVERLOAD bit is also set.

E1432_TRAILER_INFO_TRIGGER , which indicates that this input channel was enabled
to trigger and detected a trigger level crossing within this block. This does not necessarily
mean that this input channel was the trigger for this data block, since there might have been
another input trigger by another input channel first.

E1432_TRAILER_INFO_SETTLED , which indicates that the data in this block was col-
lected with properly settled hardware.

E1432_TRAILER_INFO_STOP, which indicates that this is the last scan of data in the
measurement.

112 E1432

E1432_SET_APPEND_STATUS(3) E1432_SET_APPEND_STATUS(3)

E1432_TRAILER_INFO_OT_RAMP_TOO_FAST , which indicates that the tachometer
signal was changing frequency too fast over the time that resampled data (revolution
domain) was being calculated.

E1432_TRAILER_INFO_DEC_2_MASK, which is a set of five bits that, when shifted
down byE1432_TRAILER_INFO_DEC_2_SHIFT, specify the number of decimate-by-
two decimation passes are being performed on the input data before it is sent to the host.

E1432_TRAILER_INFO_DEC_5, which indicates whether a decimate-by-five decimation
pass is being performed on the input data before it is sent to the host.

E1432_TRAILER_INFO_CHAN_MASK , which is a set of ten bits that, when shifted
down by E1432_TRAILER_INFO_CHAN_SHIFT , specify the channel number for the
data block. This channel number is off by one from the channel number used in the call to
e1432_create_channel_group. The "off-by-one" is so that the trailer channel value starts at
zero, not one, so that the trailer can efficiently encode all possible channel numbers.

E1432_TRAILER_INFO_TYPE_MASK , which is a set of three bits that, when shifted
down by E1432_TRAILER_INFO_TYPE_SHIFT , specify the type of data in the data
block. A value of zero means time data, a value of (E1432_FREQ_DAT A -
E1432_TIME_DAT A) means frequency data, and so on. The values are the same as the
data type that is passed toe1432_read_raw_data, with the value ofE1432_TIME_DAT A
subtracted out. This subtraction allows the value to be encoded efficiently in three bits.

peak, which is the Peak value. Thepeak_modeparameter in thee1432_set_peak_modefunction
call determines determines what kind of processing is performed to produce the value returned in
peak. A peak_modeof E1432_PEAK_MODE_OFF turns Peak detection off andpeakwill be set
to 0 as a result. Whenpeak_modeis E1432_PEAK_MODE_BLOCK, peakis the peak of the full
span data across the time period of the block. Whenpeak_modeis E1432_PEAK_MODE_FILT ,
peakis same as that returned bye1432_get_current_valuebut sampled at the at the trigger point or
the closest point within the time period of the block.

rms, which is the RMS value. Therms_modeparameter in thee1432_set_rms_modefunction call
determines determines what kind of processing is performed to produce the value returned inrms.
A rms_modeof E1432_RMS_MODE_OFFturns RMS processing off andrmswill be set to 0 as a
result. Whenrms_modeis E1432_RMS_MODE_BLOCK, rms is the rms of the full span data
across the time period of the block. Whenrms_modeis E1432_RMS_MODE_FILT, rms is same
as that returned bye1432_get_current_valuebut sampled at the at the trigger point or the closest
point within the time period of the block.

The weighting, set bye1432_set_weightingapplies to bothpeakand rms. Both peakand rms are
only available at clock frequencies of 65,536 or less. Currently bothpeakandrmsare the result of
processing the full span data, not the decimated data.

The trailer data is one way to get status information about the data, and is the most common way to get this
information. An alternative is to use theE1432_DAT A_SIZE_32_SERV value for data size (see
e1432_set_data_size), though this does not contain as much information.

RESET VALUE
After a reset,appendis set toE1432_APPEND_STATUS_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 113

E1432_SET_APPEND_STATUS(3) E1432_SET_APPEND_STATUS(3)

SEE ALSO
e1432_read_raw_data, e1432_read_float32_data, e1432_read_float64_data, e1432_set_clock_freq,
e1432_set_data_size, e1432_set_peak_mode, e1432_set_rms_mode, e1432_set_weighting,
e1432_set_zoom.

114 E1432

E1432_SET_ARM_CHANNEL(3) E1432_SET_ARM_CHANNEL(3)

NAME
e1432_set_arm_channel − Select a tach channel as the arm channel
e1432_get_arm_channel − Get the current arm state of a tach channel

SYNOPSIS
SHORTSIZ16 e1432_set_arm_channel(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 state)
SHORTSIZ16 e1432_get_arm_channel(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *state)

DESCRIPTION
e1432_set_arm_channelenables/disables a single tach channel as the arming and pre-arming channel for
RPM armed measurements.

e1432_get_arm_channelreturns the arming state of a tachometer channel into a memory location pointed
to bychanID.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is the ID of a single tachometer channel.

stateenables or disables the tach channel as the arming channel. The legal values of this parameter are
E1432_CHANNEL_ONandE1432_CHANNEL_OFF.

In the RPM arming modes (E1432_ARM_RPM_RUNUP, E1432_ARM_RPM_RUNDOWN, and
E1432_ARM_RPM_DELTA) the arm channel and the active trigger channel must be the same, otherwise
an error will be reported.

RESET VALUE
After a reset, the first tachometer channel is set toE1432_CHANNEL_ON.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_trigger_channel, e1432_set_trigger_mode, e1432_set_arm_mode, e1432_set_pre_arm_mode

E1432 115

E1432_SET_ARM_MODE(3) E1432_SET_ARM_MODE(3)

NAME
e1432_set_arm_mode − Set auto arm state
e1432_get_arm_mode − Get current auto arm state
e1432_set_auto_arm − Obsolete name for e1432_set_arm_mode
e1432_get_auto_arm − Obsolete name for e1432_get_arm_mode

SYNOPSIS
SHORTSIZ16 e1432_set_arm_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 armState)
SHORTSIZ16 e1432_get_arm_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *armState)
SHORTSIZ16 e1432_set_auto_arm(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 armState)
SHORTSIZ16 e1432_get_auto_arm(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *armState)

DESCRIPTION
e1432_set_arm_modesets the arm mode, of a single channel or group of channelsID, to the value given in
armState.

e1432_get_arm_modereturns the current value of the arm mode, of a single channel or group of channels
ID, into a memory location pointed to byarmState.

e1432_set_auto_arm and e1432_get_auto_arm are identical to e1432_set_arm_modeand
e1432_get_arm_moderespectively. These functions are provided for compatibility with the E1431 Host
Interface library, and should not be used by new code.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

armStatedetermines which arm event will allow the module to advance from the IDLE state into the ARM
state.

E1432_MANUAL_ARM sets the module to wait for a arm event to occur either from the system (SYNC
line), or from thee1432_arm_measurecommand, in order to perform the transition.

E1432_AUTO_ARM sets the module to perform the transition as soon as it enters the IDLE state. When
in the order tracking mode, the measurement does not re-arm until the results of the previous arm/trigger
have been uploaded by the host. This is done to prevent accumulation of so many trigger points the the
internal data FIFO starts to overwrite the older trigger points. The data in order tracking mode is usually
not continuous for this reason. If continuous resampled data is wanted, use the
E1432_AUTO_ARM_CONTINUOUS in order tracking.

E1432_AUTO_ARM_CONTINUOUS is used only in the order tracking mode to continuously resample
data. This mode currently only works with theE1432_TACH_EDGE_TRIGGER auto trigger mode,
which will produce continuously resampled data. If the host does not upload data fast enough to remain in
real time, the internal data FIFO will stop automatically before it overwrites the oldest trigger points. The
FIFO will then empty and the E1432_IRQ_MEAS_ERROR and
E1432_STATUS2_TACH_OVERFLOW bits set in the status register when the FIFO is completely empty.

116 E1432

E1432_SET_ARM_MODE(3) E1432_SET_ARM_MODE(3)

There are three RPM arming modes.

E1432_ARM_RPM_RUNUPsets the module to do an initial arm as soon as the RPM from the tachometer
board rises above the level set by thee1432_set_rpm_lowfunction. After the initial arm, each successive
arm occurs after the RPM increases by the amount set by thee1432_set_rpm_intervalfunction.

E1432_ARM_RPM_RUNDOWN sets the module to do an initial arm as soon as the RPM from the tach
board falls below the value set by thee1432_set_rpm_highfunction. After the initial arm, each successive
arm occurs after the RPM decreases by the amount set by thee1432_set_rpm_intervalfunction.

E1432_ARM_RPM_DELTA sets the module to do an initial arm as soon as the RPM falls within the val-
ues set by thee1432_set_rpm_lowande1432_set_rpm_highfunctions. After the initial arm, each succes-
sive arm occurs after the RPM changes by the amount set by thee1432_set_rpm_intervalfunction.

E1432_ARM_TIME arms the module at regular time intervals set bye1432_set_arm_time_interval. The
length of the measurement is set bye1432_set_meas_time_length.

RESET VALUE
After a reset,armStateis set toE1432_AUTO_ARM. Note that this is different than the E1431, which
defaults toE1432_MANUAL_ARM .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_arm_measure, e1432_set_rpm_low, e1432_set_rpm_high, e1432_set_rpm_interval,
e1432_set_interrupt, e1432_get_meas_warning

E1432 117

E1432_SET_ARM_TIME_INTERVAL(3) E1432_SET_ARM_TIME_INTERVAL(3)

NAME
e1432_set_arm_time_interval − Set time interval for time arming mode
e1432_get_arm_time_interval − Get time interval for time arming mode

SYNOPSIS
SHORTSIZ16 e1432_set_arm_time_interval(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 arm_time_interval)
SHORTSIZ16 e1432_get_arm_time_interval(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *arm_time_interval)

DESCRIPTION
e1432_set_arm_time_intervalsets the time between arm points when in the time arming mode. It is a
global parameter applying to all channels in a single module. Once started, a measurement will arm at mul-
tiples of this interval until the elapsed time exceeds the measurement time set by the
e1432_set_meas_time_lengthfunction.

e1432_get_arm_time_intervalreturns the current value of the arm time interval into a memory location
pointed to byarm_time_interval.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of tach channels that was obtained with a call to
e1432_create_channel_group, or the ID of a single channel.

arm_time_interval is the time interval between arm points when the arm mode is set to
E1432_ARM_TIME by thee1432_set_arm_modefunction. When not in order tracking mode, the resolu-
tion of time arming points is four milliseconds, limited by the resolution of the internal timer interrupt.

For input channels and source channels, this parameter is not used.

RESET VALUE
After a reset, thearm_time_intervaldefaults to 0.1 seconds.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_arm_time_interval_limits, e1432_set_meas_time_length

118 E1432

E1432_SET_AUTO_GROUP_MEAS(3) E1432_SET_AUTO_GROUP_MEAS(3)

NAME
e1432_set_auto_group_meas − Select auto group set up
e1432_get_auto_group_meas − Get state of auto group set up

SYNOPSIS
SHORTSIZ16 e1432_set_auto_group_meas(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 state)
SHORTSIZ16 e1432_get_auto_group_meas(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *state)

DESCRIPTION
e1432_set_auto_group_measis used to control the automatic multi-module setup performed in
e1432_init_measure. Since the default is to perform the automatic set up, you probably will never need to
call this function. If this function is used to turn off the automatic group setup, each module in a group will
need to be set up by your program. For more information about multiple module groups, see the Multiple
Module Groups section.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

stateis eitherE1432_AUTO_GROUP_MEAS_ONor E1432_AUTO_GROUP_MEAS_OFF.

Whenstateis E1432_AUTO_GROUP_MEAS_ON, e1432_init_measureautomatically takes care of set-
ting up the multi_sync, clock_master, and clock_source parameters for the modules in a measurement, and
setting the clock frequency for the non-master modules to match the master module. If there is only one
E1432 module, the parameters are set to avoid using the VXI TTLTRG lines, like this:

e1432_set_multi_sync(hw, id, E1432_MULTI_SYNC_OFF);
e1432_set_clock_master(hw, id, E1432_MASTER_CLOCK_OFF);
e1432_set_clock_source(hw, id, E1432_CLOCK_SOURCE_INTERNAL);

If there are multiple modules,e1432_init_measurepicks one module to pbe the clock master, and the
parameters are set like this:

e1432_set_multi_sync(hw, id, E1432_MULTI_SYNC_ON);
for all non-master modules:

e1432_set_clock_master(hw, slave_id, E1432_MASTER_CLOCK_OFF);
e1432_set_clock_source(hw, slave_id, E1432_CLOCK_SOURCE_VXI);
e1432_set_clock_freq(hw, slave_id, clock_freq_of_master_module);

for the master module:
e1432_set_clock_master(hw, master_id, E1432_MASTER_CLOCK_ON);
e1432_set_clock_source(hw, master_id, E1432_CLOCK_SOURCE_INTERNAL);

Whenstate is E1432_AUTO_GROUP_MEAS_OFF, e1432_init_measuredoes not do any of the above
setups, and the application is responsible for setting up the multi_sync, clock_master, clock_source, and
clock_freq parameters.

If the clock and sync/arm/trigger lines are connected to the VXI backplane, they use two of the VXI TTL-
TRG lines. The choice of which TTLTRG lines are used is determined by thee1432_set_ttltrg_clockand
e1432_set_ttltrg_satrgfunctions.

E1432 119

E1432_SET_AUTO_GROUP_MEAS(3) E1432_SET_AUTO_GROUP_MEAS(3)

RESET VALUE
Each group defaults to E1432_AUTO_GROUP_MEAS_ON

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_init_measure, e1432_create_channel_group, e1432_set_clock_source, e1432_set_clock_freq,
e1432_set_clock_master, e1432_set_multi_sync, e1432_set_ttltrg_clock, e1432_set_ttltrg_satrg

120 E1432

E1432_SET_AUTO_RANGE_MODE(3) E1432_SET_AUTO_RANGE_MODE(3)

NAME
e1432_set_auto_range_mode − Set auto-range mode
e1432_get_auto_range_mode − Get auto-range mode

SYNOPSIS
SHORTSIZ16 e1432_set_auto_range_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode)
SHORTSIZ16 e1432_get_auto_range_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mode)

DESCRIPTION
e1432_set_auto_range_modesets the auto-range mode, of a single channel or group of channelsID, to the
value given inmode.

e1432_get_auto_range_modereturns the current value of the auto-range mode, of a single channel or group
of channelsID, into a memory location pointed to bymode.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

modespecifies the auto-range mode. The valid values are:

E1432_AUTO_RANGE_MODE_DEFDuring an auto-range, the input range will be adjusted up or down
until the best range setting is found.

E1432_AUTO_RANGE_MODE_UPDuring an auto-range, the input range will never be decreased.

E1432_AUTO_RANGE_MODE_DOWNDuring an auto-range, the input range will never be increased.

RESET VALUE
After a reset, the auto-range mode is set toE1432_AUTO_RANGE_MODE_DEF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_auto_range

E1432 121

E1432_SET_AUTO_TRIGGER(3) E1432_SET_AUTO_TRIGGER(3)

NAME
e1432_set_auto_trigger − Set auto trigger state
e1432_get_auto_trigger − Get current auto trigger state

SYNOPSIS
SHORTSIZ16 e1432_set_auto_trigger(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 trigState)
SHORTSIZ16 e1432_get_auto_trigger(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *trigState)

DESCRIPTION
e1432_set_auto_triggersets the trigger state, of a single channel or group of channelsID, to the value
given intrigState.

e1432_get_auto_triggerreturns the current value of the trigger state, of a single channel or group of chan-
nelsID, into a memory location pointed to bytrigState.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

trigStatedetermines which trigger event will allow the module to advance from the TRIGGER state into the
MEASURE state.E1432_MANUAL_TRIGGER sets the module to wait for a trigger event to occur
either locally or from the system (SYNC line), or from thee1432_trigger_measurecommand, in order to
perform the transition.E1432_AUTO_TRIGGER sets the module to perform the transition as soon as it
enters the TRIGGER state.E1432_TACH_EDGE_TRIGGER is used in order tracking or RPM trigger-
ing to trigger at the next tach edge after the arming point.

RESET VALUE
After a reset,trigState is set toE1432_AUTO_TRIGGER. Note that this is different than the E1431,
which defaults toE1432_MANUAL_TRIGGER .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_trigger_measure

122 E1432

E1432_SET_AVG_MODE(3) E1432_SET_AVG_MODE(3)

NAME
e1432_set_avg_mode − Set averaging mode
e1432_get_avg_mode − Get averaging mode

SYNOPSIS
SHORTSIZ16 e1432_set_avg_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode)
SHORTSIZ16 e1432_get_avg_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mode)

DESCRIPTION
e1432_set_avg_modesets the data averaging mode. At this time averaging is only allowed on the fre-
quency data that results from the FFT calculations which are turned on usinge1432_set_calc_datawith the
E1432_DAT A_FREQ parameter. Averaging allows the data from multiple scans to be averaged together
before being uploaded to the host computer. This method both reduces noise on the data and reduces the
amount of data uploaded to the host. The number of averages is set with thee1432_set_avg_numberfunc-
tion. The rate at which intermediate results in an average are sent to the host is controlled by
e1432_set_avg_update.

Although averaging is performed only on frequency data, it is still possible to read time data out of the
module when averaging is taking place. Whenever frequency data is made available to the host (as con-
trolled bye1432_set_avg_update), time data is also made available. The time data is not averaged, it is just
the most recent time block (the block corresponding to the last frequency block that was averaged into the
av erage results).

e1432_get_avg_modereturns the current averaging mode.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

modeselects one of the following averaging modes:

E1432_AVG_NONEturns off averaging.

E1432_AVG_RMSselects a mode where the sum of the squares of the real and complex components of
the frequency data (magnitude squared) is averaged point by point for the number of times specified by
e1432_set_avg_number.

E1432_AVG_LIN selects a mode where the real and complex components of the frequency data are aver-
aged separately for the number of times specified bye1432_set_avg_number.

E1432_AVG_EXPOselects an exponential averaging mode where a weighted sum of the squares of the
real and complex components of the frequency data is averaged for the number of times, N, specified by
e1432_set_avg_number. The weighting factor is set by thee1432_set_avg_weightfunction. The algorithm
for this weighted average is:

result = new point for n = 1(first point)

result(n) = (((weight - 1.0) * result(n-1)) + new point) / weight for n = 2 -> N

E1432 123

E1432_SET_AVG_MODE(3) E1432_SET_AVG_MODE(3)

where n = point number in the average and N = total number in the average.

E1432_AVG_PEAK selects a mode where the maximum values of the sum of the squares of the real and
complex components of the frequency data is saved over the number of times specified by
e1432_set_avg_number.

NOTE: the number of the averaged frequency data points for the sum of squares modes are one half
that of the un-averaged and E1432_AVG_LIN modes, since the real and imaginary components are
combined to form a single magnitude number. Instead of BLOCKSIZE points, the magnitude
squared modes will only have BLOCKSIZE/2 points.

RESET VALUE
After a reset,modeis set toE1432_AVG_NONE.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_avg_number, e1432_set_avg_update, e1432_set_avg_weight, e1432_set_calc_data

124 E1432

E1432_SET_AVG_NUMBER(3) E1432_SET_AVG_NUMBER(3)

NAME
e1432_set_avg_number − Set average number
e1432_get_avg_number − Get average number

SYNOPSIS
SHORTSIZ16 e1432_set_avg_number(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 number)
SHORTSIZ16 e1432_get_avg_number(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *number)

DESCRIPTION
e1432_set_avg_numbersets the number of scans of data to be averaged. At this time averaging is only
allowed on the frequency data that results from the FFT calculations which are turned on using
e1432_set_calc_datawith theE1432_DAT A_FREQparameter. Averaging allows the data from multiple
scans to be averaged together before being uploaded to the host computer. This method both reduces noise
on the data and reduces the amount of data uploaded to the host. Setting the average number to zero allows
continuous averaging until the measurement is stopped. The averaging method is set with the
e1432_set_avg_modefunction. The rate at with intermediate results in an average are sent to the host is
controlled bye1432_set_avg_update.

Although averaging is performed only on frequency data, it is still possible to read time data out of the
module when averaging is taking place. Whenever frequency data is made available to the host (as con-
trolled bye1432_set_avg_update), time data is also made available. The time data is not averaged, it is just
the most recent time block (the block corresponding to the last frequency block that was averaged into the
av erage results).

e1432_get_avg_numberreturns the average number.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

numberselects the total number of scans in the average.

NOTE: the number of the averaged frequency data points for the sum of squares modes are one half
that of the un-averaged and E1432_AVG_LIN modes, since the real and imaginary components are
combined to form a single magnitude number. Instead of BLOCKSIZE points, the magnitude
squared numbers will only have BLOCKSIZE/2 points.

RESET VALUE
After a reset,numberis set to10.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_avg_mode, e1432_set_avg_update, e1432_set_avg_weight, e1432_set_calc_data

E1432 125

E1432_SET_AVG_UPDATE(3) E1432_SET_AVG_UPDATE(3)

NAME
e1432_set_avg_update − Set average update rate
e1432_get_avg_update − Get average update rate

SYNOPSIS
SHORTSIZ16 e1432_set_avg_update(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 update)
SHORTSIZ16 e1432_get_avg_update(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *update)

DESCRIPTION
e1432_set_avg_updatesets the update rate of intermediate results of an ongoing average. At this time aver-
aging is only allowed on the frequency data that results from the FFT calculations which are turned on
using e1432_set_calc_datawith the E1432_DAT A_FREQ parameter. Averaging allows the data from
multiple scans to be averaged together before being uploaded to the host computer. This method both
reduces noise on the data and reduces the amount of data uploaded to the host. The averaging method is set
with the e1432_set_avg_modefunction. The total number of scan in an average is controlled by
e1432_set_avg_number.

Although averaging is performed only on frequency data, it is still possible to read time data out of the
module when averaging is taking place. Whenever frequency data is made available to the host (as con-
trolled bye1432_set_avg_update), time data is also made available. The time data is not averaged, it is just
the most recent time block (the block corresponding to the last frequency block that was averaged into the
av erage results).

e1432_get_avg_updatereturns the average update rate.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_updates, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

updateselects the update rate to the host of intermediate results in an average. A value of 1 means every
intermediate result is sent to the host, 2 means every other result, 3 means every third result, etc. The final
result in an ongoing average is always sent to the host even if is not a multiple of the update rate.

NOTE: the number of the averaged frequency data points for the sum of squares modes are one half
that of the un-averaged and E1432_AVG_LIN updates, since the real and imaginary components are
combined to form a single magnitude update. Instead of BLOCKSIZE points, the magnitude
squared updates will only have BLOCKSIZE/2 points.

RESET VALUE
After a reset,updateis set to1.

RETURN VALUE
Return 0 if successful, a (negative) error update otherwise.

SEE ALSO
e1432_set_avg_mode, e1432_set_avg_number, e1432_set_avg_weight, e1432_set_calc_data

126 E1432

E1432_SET_AVG_WEIGHT(3) E1432_SET_AVG_WEIGHT(3)

NAME
e1432_set_avg_weight − Set average weight
e1432_get_avg_weight − Get average weight

SYNOPSIS
SHORTSIZ16 e1432_set_avg_weight(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 weight)
SHORTSIZ16 e1432_get_avg_weight(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *weight)

DESCRIPTION
e1432_set_avg_weightsets the weight factor for the weighted average mode,E1432_AVG_EXPO, set by
the e1432_set_avg_mode function. At this time averaging is only allowed on the frequency data that
results from the FFT calculations which are turned on usinge1432_set_calc_datawith the
E1432_DAT A_FREQ parameter. Averaging allows the data from multiple scans to be averaged together
before being uploaded to the host computer. This method both reduces noise on the data and reduces the
amount of data uploaded to the host. The averaging update rate is set with thee1432_set_avg_updatefunc-
tion. The total number of scans in an average is set bye1432_set_avg_number.

e1432_get_avg_weightreturns the average weight factor.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_weights, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

weightselects the weight factor for the average. The algorithm for therate weighted average is:

result = new point for n = 1(first point)

result(n) = (((weight - 1.0) * result(n-1)) + new point) / weight for n = 2 -> N

where n = point number in the average and N = total number in the average.

RESET VALUE
After a reset,weightis set to1.0.

RETURN VALUE
Return 0 if successful, a (negative) error weight otherwise.

SEE ALSO
e1432_set_avg_mode, e1432_set_avg_number, e1432_set_avg_update, e1432_set_calc_data

E1432 127

E1432_SET_BLOCKSIZE(3) E1432_SET_BLOCKSIZE(3)

NAME
e1432_set_blocksize − Set measurement blocksize
e1432_get_blocksize − Get current measurement blocksize
e1432_get_blocksize_current_max − Get current maximum blocksize

SYNOPSIS
SHORTSIZ16 e1432_set_blocksize(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 blocksize)
SHORTSIZ16 e1432_get_blocksize(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *blocksize)
SHORTSIZ16 e1432_get_blocksize_current_max(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *max)

DESCRIPTION
e1432_set_blocksizesets the measurement blocksize, of a single channel or group of channelsID, to the
value given inblocksize. If a measurement is in progress while calling this function, the measurement is
aborted.

e1432_get_blocksizereturns the current value of the measurement blocksize, of a single channel or group
of channelsID, into a memory location pointed to byblocksize.

When the data port is set to VME (seee1432_set_data_port), then thisblocksizeis the number of data sam-
ples produced, for each active channel, each time there is a trigger. These samples are put together into a
contiguous block, one block for each active channel, and sent to the VME bus.

When the data port is set to local bus eavesdrop, (seee1432_set_data_port), this blocksizeis again the
number of data samples in a block sent to the VME bus.

The transfer size for local bus transfers (when the data port is either local bus, or local bus eavesdrop) is
specified bye1432_set_xfer_size. Howev er, the default value for that is zero which means to use thisblock-
size.

e1432_get_blocksize_current_maxreturns the maximum valid value for the blocksize, given the amount of
DRAM available, the current number of active channels, and the current settings of the calc data, data size,
data port, append status, and fifo size parameters. The value is returned into the memory location pointed
to by max. If the ID is a group ID, thene1432_get_blocksize_current_maxreturns the minimum of the
maximum blocksizes of the modules in the group.

This same "current maximum blocksize" can also be used to determine the current maximum value for the
overlap.

To get the maximum value for fifo size, usee1432_get_fifo_size_current_max.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

blocksizeselects the number of sample points in a block. The minimum legal value is 1; the maximum
depends on how much RAM is available, how many channels are active in a module, and whether the mod-
ule is doing FFTs or is in zoom mode. When the module is doing FFTs, the following restrictions on

128 E1432

E1432_SET_BLOCKSIZE(3) E1432_SET_BLOCKSIZE(3)

blocksize hold:

Minimum: 64 non-zoom 32 zoom
Maximum: 8192 non-zoom 4096 zoom
Must be a power of two

The blocksize parameter should not include the size of the appended status data, as defined in
e1432_set_append_status. This parameter may also be set withe1432_set_data_format.

NOTE: When doing an order track measurement, the following relationship must hold between these
parameters:

max_order <= blocksize * delta_order / 5.12

or an ERR1432_ILLEGAL_BLOCK_ORDER_COMBO error will be issued when the measurement
starts.

When the data size is set toE1432_DAT A_SIZE_16, which is the default, theblocksizewill be rounded
down to an even number (but ablocksizeof one will get rounded up to two to avoid getting a zero block-
size).

When doing local-bus transfers, the minimum blocksize is four.

RESET VALUE
After a reset, the measurementblocksizeis set to1024(1K).

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_append_status, e1432_set_calc_data, e1432_set_data_format, e1432_set_data_port,
e1432_set_data_size, e1432_set_delta_order, e1432_set_max_order, e1432_set_overlap,
e1432_set_xfer_size, e1432_get_blocksize_limits, e1432_get_fifo_size_current_max

E1432 129

E1432_SET_CALC_DAT A(3) E1432_SET_CALC_DAT A(3)

NAME
e1432_set_calc_data − Set the granularity of resampled time data
e1432_get_calc_data − Get the granularity of resampled time data

SYNOPSIS
SHORTSIZ16 e1432_set_calc_data(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 data_type)
SHORTSIZ16 e1432_get_calc_data(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *data_type)

DESCRIPTION
e1432_set_calc_datasets the type of calculated data available from a measurement.

e1432_get_calc_datareturns the type of calculated data into the variable pointed to bydata_type.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

data_typespecifies the type of data calculation. The available options:

E1432_DAT A_TIME performs no additional calculation on the input data. Only input time data will be
available to the host.

E1432_DAT A_FREQperforms a FFT calculation on the input data. The size of the FFT is limited to the
following blocksizes:

Minimum: 64 non-zoom 32 zoom
Minimum: 8192 non-zoom 4096 zoom

and must be a power of two. Only input time data and its FFT are available to the host.

E1432_DAT A_RESAMP_TIME resamples the input data into the revolution domain. This is the method
to enable order tracking calculations to be done in the E1432 module. Only input time data and its resam-
pled time data are available to the host.

E1432_DAT A_ORDERperforms a FFT calculation on the resampled input data, producing an order spec-
trum. The size of the FFT is limited to a minimum blocksize of 64 and a maximum blocksize of 4096.
Choosing this option also enables the calculation of the resampled input data upon which it depends. The
input time data, resampled time data, and order spectrum are all available to the host.NOTE: no FFTed
input time data is available.

This function only enables what types of data are calculated and available to the host, not what is actually
sent to the host. The data sent to the host is enabled or disabled bye1432_set_enable. The default condi-
tion is that all data available is sent to the host. If that is not what is wanted,e1432_set_enablemust be
used to prevent some of the data from being sent to the host. For example, if only input time data and order
data are wanted in the host and not resampled time data, usee1432_set_calc_datato set the calculated data
to E1432_DAT A_ORDER and usee1432_set_enableto enable input time data, disable resampled time
data and enable order data.

NOTE: See the functione1432_read_float32_datafor a discussion of the relationship of blocksize of the
FFT data and averaging modes.

130 E1432

E1432_SET_CALC_DAT A(3) E1432_SET_CALC_DAT A(3)

RESET VALUE
After a reset,data is set toE1432_DAT A_TIME.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_max_order, e1432_set_delta_order, e1432_set_enable.

E1432 131

E1432_SET_CAL_DAC(3) E1432_SET_CAL_DAC(3)

NAME
e1432_set_cal_dac − Set calibration DAC value
e1432_get_cal_dac − Get current value of calibration DAC

SYNOPSIS
SHORTSIZ16 e1432_set_cal_dac(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 cal_dac)
SHORTSIZ16 e1432_get_cal_dac(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *cal_dac)

DESCRIPTION
This is a low-level function that is normally not used. Instead, usee1432_set_cal_voltageto control the
calibration DAC output voltage.

e1432_set_cal_dacsets the E1432 internal calibration DAC value, of a single channel or group of channels
ID, to the value given incal_dac.

e1432_get_cal_dacreturns the current setting of the internal calibration DAC, of a single channel or group
of channelsID, into a memory location pointed to bycal_dac.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

cal_dacdetermines the DAC setting. This should be an integer between -2048 and 2047. This value is
written directly to the calibration DAC. The voltage produced at the DAC output depends on the setting of
calin (seee1432_set_calinande1432_set_cal_voltage).

RESET VALUE
After a reset,cal_dacis set to0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_calin, e1432_set_cal_voltage, e1432_set_source_output, e1432_set_sumbus

132 E1432

E1432_SET_CAL_VOLTA GE(3) E1432_SET_CAL_VOLTA GE(3)

NAME
e1432_set_cal_voltage − Set calibration DAC voltage
e1432_get_cal_voltage − Get current value of calibration DAC voltage

SYNOPSIS
SHORTSIZ16 e1432_set_cal_voltage(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 cal_voltage)
SHORTSIZ16 e1432_get_cal_voltage(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *cal_voltage)

DESCRIPTION
e1432_set_cal_voltagesets the E1432 internal calibration DAC voltage, of a single channel or group of
channelsID, to the value given incal_voltage.

e1432_get_cal_voltagereturns the current internal calibration DAC voltage, of a single channel or group of
channelsID, into a memory location pointed to bycal_voltage.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

cal_voltagedetermines the voltage to set. The valid range depends on the setting of thecalin parameter
(seee1432_set_calin). If calin is E1432_CALIN_DC_LO, then the valid range is -0.4838 to +0.4835 volts.
For any other value ofcalin, the valid range is -15 to +14.9927 volts.

This specified voltage is converted to the appropriate calibration DAC setting, and the DAC is set using
e1432_set_cal_dac.

RESET VALUE
After a reset,cal_voltageis set to0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_calin, e1432_set_cal_dac, e1432_set_source_output, e1432_set_sumbus

E1432 133

E1432_SET_CALIN(3) E1432_SET_CALIN(3)

NAME
e1432_set_calin − Set driver for the CALIN line
e1432_get_calin − Get current value of CALIN driver

SYNOPSIS
SHORTSIZ16 e1432_set_calin(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 calin)
SHORTSIZ16 e1432_get_calin(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *calin)

DESCRIPTION
e1432_set_calinsets the driver for the internal CALIN line, of a single channel or group of channelsID, to
the value given incalin. The CALIN line is sent to all SCAs, the optional source board, and the break-out
box.

e1432_get_calinreturns the current setting of the internal calibration DAC, of a single channel or group of
channelsID, into a memory location pointed to bycalin.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

calin determines the driver for the CALIN line. This should be one of:

E1432_CALIN_OPEN, to hav e nothing drive the line.

E1432_CALIN_GROUND, to ground the line.

E1432_CALIN_DC_HI, to hav e the calibration DAC high range drive the line (the DAC can then drive
between +-15 volts).

E1432_CALIN_DC_LO, to hav e the calibration DAC low range drive the line (the DAC can then drive
between +-0.48 volts).

E1432_CALIN_SUMBUS, to hav e the VXI SUMBUS, amplified by a factor of 3, drive the line.

E1432_CALIN_SUMBUS_TACH, which is identical toE1432_CALIN_SUMBUS, except that it indi-
cates that the SUMBUS is being driven by an E1432 tach channel. This can be used when monitoring an
E1432 tach channel, and is a hint to the input channel that the scale factor should be adjusted properly for
the tach board. Seee1432_set_input_highfor more information on monitoring tach channels.

E1432_CALIN_CALOUT , to hav e the internal CALOUT line drive the line. The CALOUT line can be
driven by the optional source board, or by the option tach board. When monitoring tach channels,
E1432_CALIN_CALOUT is a more direct connection to the input channels, and will result in smaller DC
offset. However, it works only within a single E1432 module.

RESET VALUE
After a reset,calin is set toE1432_CALIN_GROUND.

134 E1432

E1432_SET_CALIN(3) E1432_SET_CALIN(3)

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_input_high, e1432_set_cal_voltage, e1432_set_source_output, e1432_set_sumbus

E1432 135

E1432_SET_CENTER_FREQ(3) E1432_SET_CENTER_FREQ(3)

NAME
e1432_set_center_freq - Set zoom center frequency
e1432_get_center_freq - Get zoom center frequency

SYNOPSIS
SHORTSIZ16 e1432_set_center_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 freq)
SHORTSIZ16 e1432_get_center_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *freq)

DESCRIPTION
e1432_set_center_freqsets the center frequency for "zooming". An error will result when attempting to set
the center frequency higher than what can be supported by the module. See the discussion of zooming
under thee1432_set_zoomfunction for center frequency limitations and the relationship between center
frequency, span and sample frequency.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

freq is the center frequency, in Hertz.

This function sets the center frequency of all input channels in the module referred to byID. By default, all
source channels in the module referred to byID will also get this same center frequency. The source chan-
nels can be given a center frequency different than the input channels by using
e1432_set_source_centerfreq, which overridese1432_set_center_freqon source channels.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_zoom, e1432_get_center_freq_limits, e1432_set_span, e1432_set_clock_freq,
e1432_set_source_centerfreq

136 E1432

E1432_SET_CLOCK_FREQ(3) E1432_SET_CLOCK_FREQ(3)

NAME
e1432_set_clock_freq − Set sample clock frequency
e1432_get_clock_freq − Get sample clock frequency

SYNOPSIS
SHORTSIZ16 e1432_set_clock_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 freq)
SHORTSIZ16 e1432_get_clock_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *freq)

DESCRIPTION
e1432_set_clock_freqsets the fundamental sample clock frequency used by all input and source channels
specified by theD. The substrate is capable of creating a wide variety of sample clock frequencies; how-
ev er, each input or source channel generally supports only a limited range of frequencies.

This sample clock frequency is the clock frequency that is connected to one of the VXI TTLTRG lines, if
needed to synchronize several E1432 modules. This clock frequency is normally, but not always, the fun-
damental rate at which data is collected from the ADCs on the SCAs.

The clock frequency determines which measurement spans are available, and must therefore be set before
setting the span withe1432_set_span.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

freq is the clock frequency, in Hertz.

Internal Clock Source

The way the specifiedfreq is used depends on the setting of thee1432_set_clock_sourceparameter. The
default clock source,E1432_CLOCK_SOURCE_INTERNAL, means that this module is generating the
sample clock internally. In this case, the clock frequency must be one of the frequencies that the E1432
module can generate.

For the E1432 51.2 kHz input SCA, the valid clock frequencies (in Hz) that can be generated are:

40960 41938.6 44122.1 48000 49152 50000 51200 52400.9 61440 62500 64000 65536 66666.6 76800
78125 80000 81920 96000 98304 100000 102400

For the E1433 196 kHz input SCA, the valid clock frequencies (in Hz) that can be generated are all of those
listed above, plus the following:

122880 125000 128000 133333.3 153600 156250 163840 192000 196608

Some of the above clock frequencies (40960, 49152, 51200, 65536) are useful when frequency-domain
measurements are being performed. They are useful because they giv e round numbers when divided by
powers of two. Some of them (48000, 50000, 64000, 66666.6, 80000) are useful when time-domain mea-
surements are being performed. They are useful because their reciprocal is a round number, or perhaps
because when decimated by a power of two, their reciprocal is a round number.

E1432 137

E1432_SET_CLOCK_FREQ(3) E1432_SET_CLOCK_FREQ(3)

Other frequencies in the list may have special applications. For example, 61440 Hz might be useful when
doing frequency-domain measurements involving 60Hz power line harmonics and sub-harmonics.

For the E1433 196 kHz input SCA, the clock is used directly by the ADC, and the maximum valid span is
clock_freq / 2.56.

For the E1432 51.2 kHz input SCA, the clock is used directly if it is 51200 Hz or less. This means that the
largest valid span will be clock_freq / 2.56. If the clock frequency is larger than 51200 Hz, the clock is
effectively divided by two before use. This means that the largest valid span will be clock_freq / 5.12. See
the manual page fore1432_set_spanfor more details.

For the E1434 source, and the Option 1D4 source board, the valid clock frequencies are the same as those
for the E1432 51.2 kHz input SCA, except that the maximum allowed clock frequency is 65536 Hz.

External Clock Sources

If the e1432_set_clock_source parameter is set to E1432_CLOCK_SOURCE_VXI,
E1432_CLOCK_SOURCE_EXTERNAL, or E1432_CLOCK_SOURCE_EXTERNALN, it means that
this module is not generating the clock internally. In this case, the clock frequency coming into the module
must still be within the range of 40960 Hz to 102400 Hz (for the E1432) or 40960 Hz to 196608 Hz (for the
E1433), or 40960 Hz to 65536 Hz (for the E1434). Thefreq parameter toe1432_set_clock_freqmust
match the frequency coming into the module, and the frequency coming into the module must be a fixed
frequency so that the module’s internal phase locked loop can lock to the external clock.

The module will use the specifiedfreq to determine the valid spans. For the E1433 196 kHz input SCA, the
clock is used directly by the ADC, and the maximum valid span is clock_freq / 2.56.

For the E1432 51.2 kHz input SCA, the clock is used directly if it is 51200 Hz or less. This means that the
largest valid span will be clock_freq / 2.56. If the clock frequency is larger than 51200 Hz, the clock is
effectively divided by two before use. This means that the largest valid span will be clock_freq / 5.12. The
maximum allowed clock frequency is 102400 Hz. See the manual page fore1432_set_spanfor more
details.

For the Option 1D4 source board, the maximum valid clock frequency is 65536 Hz.

RESET VALUE
The default clock frequency is 51200 Hz.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_clock_freq_limits, e1432_set_span, e1432_set_clock_source

138 E1432

E1432_SET_CLOCK_MASTER(3) E1432_SET_CLOCK_MASTER(3)

NAME
e1432_set_clock_master − Set sample clock source
e1432_get_clock_master − Get current value of sample clock source

SYNOPSIS
SHORTSIZ16 e1432_set_clock_master(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 state)
SHORTSIZ16 e1432_get_clock_master(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *state)

DESCRIPTION
A typical measurement doesn’t generally need to deal withe1432_set_clock_masterat all. Normally, the
call toe1432_init_measureautomatically takes care of setting the clock master correctly for all the modules
in a measurement, by internally callinge1432_set_clock_masterfor each module. This automatic setup can
be disabled using thee1432_set_auto_group_measfunction.

e1432_set_clock_mastercontrols whether the E1432 module drives the VXI bus clock line. The clock line
is one of the VXI TTLTRG lines, as selected bye1432_set_ttltrg_clock.

e1432_get_clock_masterreturns the current value of the master clock for a single channel or group of chan-
nelsID, into a memory location pointed to bystate.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

statedetermines the state of the master clock.E1432_MASTER_CLOCK_ON drives the sample clock
from this module onto the VXI bus.E1432_MASTER_CLOCK_OFF turns off the sample clock drive.

RESET VALUE
After a reset,stateis set toE1432_MASTER_CLOCK_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_ttltrg_clock, e1432_set_auto_group_meas, e1432_init_measure, e1432_set_clock_source

E1432 139

E1432_SET_CLOCK_SOURCE(3) E1432_SET_CLOCK_SOURCE(3)

NAME
e1432_set_clock_source − Set sample clock source
e1432_get_clock_source − Get current value of sample clock source

SYNOPSIS
SHORTSIZ16 e1432_set_clock_source(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 source)
SHORTSIZ16 e1432_get_clock_source(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *source)

DESCRIPTION
A typical measurement doesn’t generally need to deal withe1432_set_clock_sourceat all. Normally, the
call to e1432_init_measureautomatically takes care of setting the clock source for all the modules in a
measurement, by internally callinge1432_set_clock_sourcefor each module. This automatic setup can be
disabled using thee1432_set_auto_group_measfunction.

e1432_set_clock_sourcesets the source of the sample clock, of a single channel or group of channelsID, to
the value given insource. If a measurement is in progress while calling this function, the measurement is
aborted.

e1432_get_clock_sourcereturns the current value of the sample clock source, of a single channel or group
of channelsID, into a memory location pointed to bysource.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

sourcedetermines the source for the sample clock.

E1432_CLOCK_SOURCE_INTERNAL selects the internal sample clock. This is the default. With this
clock source, the clock frequency programmed bye1432_set_clock_freqwill get rounded to one of the
valid clock frequencies that the E1432 hardware can generate.

E1432_CLOCK_SOURCE_INT_VXI10 is nearly the same as
E1432_CLOCK_SOURCE_INTERNAL. It is different only if the clock frequency (programmed by
e1432_set_clock_freq) is set to one of the valid clock frequencies that is a sub-multiple of 10 MHz. Nor-
mally when the clock frequency is one of these values, the module divides down an internal 10 MHz crystal
oscillator to produce the sample clock. TheE1432_CLOCK_SOURCE_INT_VXI10 value causes the
module to instead divide down the VXI backplane 10 MHz clock line to produce the sample clock. Usually
you don’t want to do that, because the internal crystal is more accurate, more stable, and less noisy. If you
switch to the backplane 10 MHz line, the module may not meet all of its specifications. But special appli-
cations might want to force the use of the backplane 10 MHz line.

E1432_CLOCK_SOURCE_VXI selects the VXI bus sample clock. This assumes that something else out
there is producing the sample clock on one of the VXI TTLTRG lines. The clock frequency coming in can
be anything within the range of 40960 Hz to 196608 Hz (max 102400 Hz for E1432, max 196608 Hz for
E1433), but the clock frequency coming in must match the clock frequency told to the module with
e1432_set_clock_freq. The clock frequency coming in must be a fixed frequency so that the internal phase
locked loop can accurately lock to this frequency.

140 E1432

E1432_SET_CLOCK_SOURCE(3) E1432_SET_CLOCK_SOURCE(3)

E1432_CLOCK_SOURCE_EXTERNAL and E1432_CLOCK_SOURCE_EXTERNALN select the
external sample clock, positive true and negative true respectively. The clock frequency coming in can be
anything within the range of 40960 Hz to 196608 Hz (max 102400 Hz for E1432, max 196608 Hz for
E1433, max 65536 for E1434). The clock frequency coming in must match the clock frequency told to the
module withe1432_set_clock_freq, and the clock frequency coming in must be constant so that the mod-
ule’s PLL can lock to it successfully.

The external sample clock input is present on any E143x module except those which have the optional 1D4
source board. This input is an SMB connector labeled "ExSamp". The external sample clock input is a
TTL input, so the external clock signal must have TTL signal levels.

To use the external sample clock input, you will need to usee1432_set_auto_group_meas, and also pro-
gram the clock master and multi-sync parameters for all the E143x modules in the measurement. See
e1432_set_auto_group_measfor more information.

E1432_CLOCK_VXI_DEC_3 selects the VXI bus clock, divided by 3, provided by some other clock
master. TheE1432_CLOCK_VXI_DEC_3 mode was provided for use with the E1431 module, which
generates a clock that is 196608 Hz, which is three times 65536. To use the same clock line for both an
E1431 and an E1432, the E1431 must be the clock master, and the E1432 must use
E1432_CLOCK_VXI_DEC_3 to get a clock frequency that it can use. However, the hardware to imple-
ment this option on the E1432 module has never been tested and the use of this option is not recommended
or supported.

For clock sources external to the module,e1432_set_clock_frequencymust be set to the frequency being
input to the module in order for the internal phase locked loop to be configured correctly.

Note that ife1432_init_measureis subsequently called ande1432_set_auto_group_meashas not been set
to E1432_AUTO_GROUP_MEAS_OFF, the clock source will be reset to a default value. See
e1432_init_measureande1432_set_auto_group_measfor more detailed information.

Other External Sample Clocks

If you have an E143x module that does not have the external sample clock connector on the front panel, it
may be possible to use the TRIG IN connector on the front panel of a V/743 or E1482B MXI card to pro-
vide an external sample clock. Perhaps a VXLink card has this as well. In this case, you would use use
E1432_CLOCK_SOURCE_VXI for all E1432 modules in the measurement.

To use the TRIG IN connector on the V/743 or E1482B MXI card would probably require using some low-
level SICL function calls to set it up correctly. I haven’t actually done this myself, but I believe you use the
ivxitrigroute function to do this with a V/743, and you instead use the file
/usr/pil/etc/vxi16/oride.cf to configure a MXI card to do this.

RESET VALUE
After a reset,sourceis set toE1432_CLOCK_SOURCE_INTERNAL.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_auto_group_meas, e1432_init_measure, e1432_set_clock_freq, e1432_set_ttltrg_clock

E1432 141

E1432_SET_COUPLING(3) E1432_SET_COUPLING(3)

NAME
e1432_set_coupling − Set input coupling to AC or DC
e1432_get_coupling − Get current state of input coupling

SYNOPSIS
SHORTSIZ16 e1432_set_coupling(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 coupling)
SHORTSIZ16 e1432_get_coupling(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *coupling)

DESCRIPTION
e1432_set_couplingsets the input coupling, of a single channel or group of channelsID, to the value given
in coupling.

e1432_get_couplingreturns the current state of the input coupling, of a single channel or group of channels
ID, in a memory location pointed to bycoupling.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

couplingdetermines the AC or DC coupling mode of the input. In addition, it can control the high-pass fil-
ter that is present on some Charge and Microphone Break-out Boxes. The valid values forcouplingare:

E1432_COUPLING_DC, which DC couples the input (and turns off the high-pass filter if one is present
on the Charge or Microphone Break-out Box).

E1432_COUPLING_AC, which AC couples the input (and turns off the high-pass filter if one is present
on the Charge or Microphone Break-out Box).

E1432_COUPLING_DC_BOB_HP, which DC couples the input, and also turns on the high-pass filter on
the Charge or Microphone Break-out Box. This value is valid only if there is a Charge Break-out Box with
option 402 or a Microphone Break-out Box with option 402 connected to the input. In addition, this value
is valid only when the Charge Break-out Box is in charge mode or the Microphone Break-out Box is in
Microphone mode (seee1432_set_input_mode).

E1432_COUPLING_AC_BOB_HP, which AC couples the input, and also turns on the high-pass filter on
the Charge or Microphone Break-out Box. This value is valid only if there is a Charge Break-out Box with
option 402 or a Microphone Break-out Box with option 402 connected to the input. In addition, this value
is valid only when the Charge Break-out Box is in charge mode or the Microphone Break-out Box is in
Microphone mode (seee1432_set_input_mode).

On an E1432 input, the AC coupling filter is a simple one-pole analog filter with a cutoff of about 0.7 Hz,
which gives it a settling time constant of about 150 ms.

On an E1433 input, the AC coupling filter is implemented using feedback from the input DSP back to a
DAC connected to the analog signal path. This complicated setup allows the corner frequency of the AC
coupling to be changed programmatically (seee1432_set_coupling_freq), allows tight phase-matching
between E1433 input channels, and does a better job of removing DC offsets. The settling time constant
for this filter is roughly 0.25/f0 seconds, where f0 is the programmed corner frequency.

The output of a Charge Break-out Box in Charge mode is always inherently AC coupled, regardless of the
setting of thiscouplingparameter. Howev er, there may be a residual DC offset coming out of the Charge
BoB. If the input coupling is set to AC coupling, this DC offset should be (at least partially) removed. If

142 E1432

E1432_SET_COUPLING(3) E1432_SET_COUPLING(3)

the input coupling is set toE1432_COUPLING_AC_BOB_HP, or E1432_COUPLING_DC_BOB_HP, then
the output of the Charge BoB has a high-pass filter applied to it, which will help remove low-frequency sig-
nals. The high-pass filter is a third-order Butterworth filter with a cutoff frequency of about 10 Hz.

The output of a Microphone Break-out Box in Microphone mode is always inherently AC coupled, regard-
less of the setting of thiscouplingparameter. Howev er, there may be a residual DC offset coming out of
the Microphone BoB. If the input coupling is set to AC coupling, this DC offset should be (at least par-
tially) removed. If the input coupling is set toE1432_COUPLING_AC_BOB_HPor
E1432_COUPLING_DC_BOB_HP, then the output of the Microphone BoB has a high-pass filter applied
to it, which will help remove low-frequency signals. The high-pass filter is a third-order Butterworth filter
with a cutoff frequency of about 22.4 Hz. For input range settings greater than 5 Volts, the high-pass filter
is disconnected due to hardware limitations (which may be changed in the future), even when thecoupling
is set to enable the high-pass filter.

For source channels, this parameter is not used, since it is not possible to AC couple the output of the
source. An attempt to set this parameter will generate an error.

For tach channels, this parameter is not used, since it is not possible to AC couple the tach input. An
attempt to set this parameter will generate an error.

RESET VALUE
After a reset,couplingis set toE1432_COUPLING_DC.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_analog_input, e1432_set_coupling_freq, e1432_set_input_mode

E1432 143

E1432_SET_COUPLING_FREQ(3) E1432_SET_COUPLING_FREQ(3)

NAME
e1432_set_coupling_freq − Set AC coupling frequency
e1432_get_coupling_freq − Get current AC coupling frequency

SYNOPSIS
SHORTSIZ16 e1432_set_coupling_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 coupling_freq)
SHORTSIZ16 e1432_get_coupling_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *coupling_freq)

DESCRIPTION
e1432_set_coupling_freqsets the AC coupling frequency, of a single channel or group of channelsID, to
the value given incoupling_freq.

e1432_get_coupling_freqreturns the current value of the AC coupling frequency, of a single channel or
group of channelsID, into a memory location pointed to bycoupling_freq.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

coupling_freqis the desired AC coupling frequency in Hz. This frequency is the 3 dB point of the high-
pass filter that implements AC coupling.

The AC coupling frequency is used only for input channels - source and tach channels do not have AC cou-
pling filters.

The AC coupling frequency is only controllable on E1433 196 kHz input channels. E1432 51.2 kHz input
channels have a fixed AC coupling filter at roughly 1 Hz. Any attempt to set the AC coupling frequency of
an E1432 input channel will generate an error. Howev er,e1432_get_coupling_freqwill return 1.0 for
E1432 input channels.

The AC coupling frequency is used only when an input channel is AC coupled (seee1432_set_coupling).
The AC coupling frequency is settable over a continuous range of 0.1 Hz to 100 Hz.

RESET VALUE
After a reset, input channels have thecoupling_freqset to 1 Hz.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_coupling_freq_limits, e1432_set_coupling

144 E1432

E1432_SET_DAT A_FORMAT(3) E1432_SET_DAT A_FORMAT(3)

NAME
e1432_set_data_format − Set all data format parameters, except data port

SYNOPSIS
SHORTSIZ16 e1432_set_data_format(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 blocksize, SHORTSIZ16 size,
SHORTSIZ16 mode, SHORTSIZ16 append)

DESCRIPTION
e1432_set_data_formatsets all of the parameters associated with the data format section of an E1432 or
group of E1432s.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

blocksizeselects the number of sample points in a block. A number between 1 and an upper limit that
depends on the amount of memory installed is a valid value forblocksize. This parameter should not take
into account the size of the appended status data. This parameter may also be set withe1432_set_blocksize.

sizeselects the number of bits of precision for the fixed point, two’s complement data outputs from the
E1432. The legal values for this parameter areE1432_DAT A_SIZE_16, E1432_DAT A_SIZE_32, and
E1432_DAT A_SIZE_32_SERV. This parameter may also be set withe1432_set_data_size.

mode selects whether the E1432’s data collection operates in block mode or continuous mode.
E1432_BLOCK_MODE selects block transfer mode.E1432_CONTINUOUS_MODE means data col-
lection will be continuous. This parameter may also be set withe1432_set_data_mode.

append selects whether or not status information is appended to a data block. Specifying
E1432_APPEND_STATUS_ONmeans that an extra block of status information is appended to the end of
each data block transferred.E1432_APPEND_STATUS_OFFdisables this feature. This parameter may
also be set withe1432_set_append_status.

RESET VALUE
After a reset,blocksize is set to 1024 (1K), size is set to E1432_DAT A_SIZE_16, mode is set to
E1432_BLOCK_MODE, andappendis set toE1432_APPEND_STATUS_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_append_status, e1432_set_blocksize, e1432_set_data_mode, e1432_set_data_size

E1432 145

E1432_SET_DAT A_MODE(3) E1432_SET_DAT A_MODE(3)

NAME
e1432_set_data_mode − Set data collection mode
e1432_get_data_mode − Get current data collection mode

SYNOPSIS
SHORTSIZ16 e1432_set_data_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode)
SHORTSIZ16 e1432_get_data_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mode)

DESCRIPTION
e1432_set_data_modesets the data collection mode, of a single channel or group of channelsID, to the
value given inmode.

e1432_get_data_modereturns the current state of the data collection mode, of a single channel or group of
channelsID, into a memory location pointed to bymode.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

modeselects whether the E1432’s data collection operates in block mode, overlap block mode, overlap
freerun mode, or continuous mode.

E1432_BLOCK_MODE selects block transfer mode. In this mode, the E1432 will stop collecting data,
and go to theIDLE state, as soon as one scan of data has been collected and transferred to the host.

E1432_DAT A_MODE_OVERLAP_BLOCK selects overlap block mode. The main difference between
overlap block mode and block mode is that overlap block mode allows more arms and triggers to occur
before an already-acquired block is sent to the host. Each time a trigger occurs, the trigger time is remem-
bered so that the data for that trigger can eventually get sent to the host. There is no longer a constraint that
the trigger must occur after the end of the previous block, so overlapping blocks are possible (hence the
name "overlap block mode"). As in continuous mode, there is an overlap parameter which controls how
much overlap is allowed between consecutive blocks.

By usinge1432_set_fifo_size, overlap block mode can be configured to act exactly like block mode. If the
FIFO size is set the same as the block size then overlap block mode becomes identical to block mode.
There are no visible differences at all.

E1432_DAT A_MODE_OVERLAP_FREERUN selects overlap freerun mode. This mode is like overlap
block mode in that it allows an arm or trigger to occur before an already-acquired block is sent to the host,
and it allows overlapping blocks. However, this mode tries not to queue up pending triggers, so that the
data sent to the host is the most recent data available.

E1432_CONTINUOUS_MODE selects continuous data mode. In this mode, the E1432 stays in the
MEASURE state and collects data until the FIFO overflows or the measurement is stopped by the host. In
that case it goes to theIDLE state.

This parameter may also be set withe1432_set_data_format.

146 E1432

E1432_SET_DAT A_MODE(3) E1432_SET_DAT A_MODE(3)

RESET VALUE
After a reset,modeis set toE1432_DAT A_MODE_OVERLAP_BLOCK .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_data_format, e1432_set_fifo_size

E1432 147

E1432_SET_DAT A_PORT(3) E1432_SET_DAT A_PORT(3)

NAME
e1432_set_data_port − Set data port to VME or Local Bus
e1432_get_data_port − Get current data port

SYNOPSIS
SHORTSIZ16 e1432_set_data_port(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 port)
SHORTSIZ16 e1432_get_data_port(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *port)

DESCRIPTION
e1432_set_data_portsets a single channel or group of channelsID, to deliver data either on the VME back-
plane or on the Local Bus (for high speed data transfers), or both, depending on the value ofport.

In any mode that uses the Local Bus, the group of E1432s must be contiguous in one mainframe and posi-
tioned immediately to the left of the module that is to receive the local bus data. The module on the
extreme left generates data and the others append their data to the data which is pipelined through them,
from left to right.

e1432_get_data_portreturns the current value of the data port, of a single channel or group of channelsID,
into a memory location pointed to byport.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

port determines the path the E1432 uses to make its data available to the host. The following three modes
are valid:

E1432_SEND_PORT_VMEcauses data to be accessed by the host via theVME bus. The E1432 module
is capable of using D32 and has a fairly fast VME interface, so this mode is sufficient for many applica-
tions.

E1432_SEND_PORT_LBUScauses data to be transmitted via theLocal Bus. This mode is only valid if
the E1432 module actually has a local bus interface, which is option UGV for the E1432 module. The local
bus interface is significantly faster than the VME interface, and using the local bus frees up the VME bus
for other uses. However, the local bus only connects modules which are adjacent to each other, and trans-
fers data only left to right.

Only time data is sent to the local bus, and the enable settings frome1432_set_enableare completely
ignored.

E1432_SEND_PORT_LBUS_EAVEScauses data to be transmitted both to the local bus and the VME
bus. This mode is only valid if the E1432 module actually has a local bus interface, which is option UGV
for the E1432 module. This mode is typically used to send data to a disk via the local bus, while allowing a
host computer to monitor the data at the same time. It is possible to have the E1432 module send time data
to the local bus, while simultaneously FFTing the data and sending the FFT results to the VME bus.

148 E1432

E1432_SET_DAT A_PORT(3) E1432_SET_DAT A_PORT(3)

EAVESDROP DETAILS
When doing eavesdrop, the local bus data ignorese1432_set_data_modeand always uses continuous input
data. The user usese1432_set_data_modeto control what data mode (continuous, overlap, block) is sent to
VME. The "continuous" mode is valid, but it won’t quite be continuous mode because the measurement
won’t be aborted if the host can’t keep up with the VME data. Instead, some of the data is skipped over and
not sent to the host.

When doing eavesdrop, the user usese1432_set_enableto control which channels and data types he is
interested in. These are the channels and data types which get sent to VME. The local bus data ignores
e1432_set_enable, and always sends all active input channels and always sends only raw time data.

When doing eavesdrop, the user usese1432_set_calc_datato specify what calculations (resampling, FFT)
are done. This applies only to the VME data. The local bus data is always just raw time data.

When doing eavesdrop,e1432_set_blocksizecontrols the blocksize of the data going to VME, but NOT the
blocksize of data going to local bus. The local bus thruput uses a separatee1432_set_xfersizeto control the
local bus blocksize. NOTE: this is not yet implemented, currently blocksize applies in all cases. Non-
eavesdrop local-bus measurements will use xfersize as well. However, the default for xfersize will be zero,
which will mean to use the value of blocksize. This will make things work in a backwards compatible way.

When doing eavesdrop,e1432_set_overlapdoes not apply to the local bus data. The local bus data is con-
tinuous with an effective overlap of 0. For VME data,e1432_set_overlapis used the same as it normally is
when not doing eavesdrop.

When doing eavesdrop, if the local bus thruput falls behind far enough, the input data FIFOs will fill up and
the measurement will get a FIFO overflow. This will abort the measurement (including the VME eaves-
dropping) just like it does in any other case of FIFO overflow with continuous data.

When doing eavesdrop, if the VME data transfer falls behind, then some of the input data is just skipped
over and is not sent to VME. No errors are generated. However, the VME data transfer always gets a com-
plete scan (a complete block from all enabled channels). In addition, the "gap" field in the trailer block is
filled in correctly, so the user will know the gap between one scan and the next. See
e1432_set_append_statusfor details about the trailer data.

Because of the above, local bus transfers will have priority over VME data calculations and transfers. The
module slows down the rate at which VME receives data blocks rather than cause the local bus thruput to
fall behind.

When doing eavesdrop, normally the VME data is not continuous, and there is an arm and trigger for each
VME data block, just like when doing a non-local-bus measurement. These arms and triggers have no
effect on the continuous local bus data, except that the very first arm/trigger starts the continuous local bus
data. There is no way to use the local bus data to reconstruct where those arms and triggers after the first
happened, so there is no way to reconstruct exactly which blocks got sent to VME during the eavesdrop.

If the module is doing order tracking, and therefore is in multi-pass mode, the data sent to local bus is taken
from the top span only. Also, when the module is doing order tracking, the data sent to local bus is not
oversampled data, even if oversample is turned on. This is done so that the data sent to disk is always the
same (top span non-oversampled time data) regardless of the order tracking setup.

Eavesdrop summary:

Local bus data VME data

e1432_set_data_mode Ignored, local bus Used

E1432 149

E1432_SET_DAT A_PORT(3) E1432_SET_DAT A_PORT(3)

data is always
continuous

e1432_set_enable Ignored, local bus Used to control what is
data is all channels, sent to VME bus
raw time data only

e1432_set_calc_data Ignored, local bus Used to control what is
data is raw time sent to VME bus
data only

e1432_set_blocksize Ignored Used

e1432_set_xfersize Used Ignored

e1432_set_overlap Ignored, overlap Used
is effectively 0

"Falling behind" If we fall behind Skip over input data
far enough, a FIFO in order to catch up
overflow will abort
the measurement

Priority Local bus xfer is Uses only whatever
first priority processing time is

left, even if it means
falling behind

Arm/trigger First one starts Used for each block
thruput, ignored
after that

RESET VALUE
After a reset,port is set toE1432_SEND_PORT_VME

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_lbus_mode, e1432_reset_lbus, e1432_set_active, e1432_set_append_status e1432_set_enable,
e1432_set_calc_data, e1432_set_data_mode, e1432_set_blocksize, e1432_set_xfersize, e1432_set_overlap

150 E1432

E1432_SET_DAT A_SIZE(3) E1432_SET_DAT A_SIZE(3)

NAME
e1432_set_data_size − Set size of samples to 16 or 32 bits
e1432_get_data_size − Get current value of data size

SYNOPSIS
SHORTSIZ16 e1432_set_data_size(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 size)
SHORTSIZ16 e1432_get_data_size(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *size)

DESCRIPTION
e1432_set_data_sizesets the sample data size, of a single channel or group of channelsID, to the value
given insize.

The data size is mostly an internal issue. Normally, data is read from the E1432 module using either
e1432_read_float32_dataor e1432_read_float64_data, and these functions will convert the raw E1432 data
into the requested format, regardless of the setting of data size.

e1432_get_data_sizereturns the current value of the sample data size, of a single channel or group of chan-
nelsID, into a memory location pointed to bysize.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

sizeselects the number of bits per sample. The output is fixed point, two’s complement data. The legal val-
ues for this parameter are E1432_DAT A_SIZE_16, E1432_DAT A_SIZE_32,
E1432_DAT A_SIZE_32_SERV, and E1432_DAT A_SIZE_FLOAT32. This parameter may also be set
with e1432_set_data_format.

All formats are integer formats exceptE1432_DAT A_SIZE_FLOAT32. Choosing 16-bit precision allows
for more data throughput on the bus. Choosing 32 bits allows more dynamic range. Choosing 32 bits with
service(E1432_DAT A_SIZE_32_SERV) provides additional information in the lower eight bits of each
sample. E1432_DAT A_SIZE_FLOAT32 means that data from the channels will be already-scaled-to-
volts 32-bit IEEE floating point numbers.

Note: When the module is doing order tracking, then only the 32-bit integer modes are valid.

All time data read from the E1432 module will be in the format specified. Trailer data at the end of a block,
if present, is in a fixed format that is not affected by this data size function. (This trailer data is only present
if it is explicitly turned on withe1432_set_append_status.) Also, frequency data, resampled time data, and
order data are not affected by the data size parameter, and are always sent as 32-bit floating-point values.

The E1432_DAT A_SIZE_32_SERVmode provides information about each sample in the block, by
embedding the information in the lower eight bits of each sample. The bottom four bits (bit number 0
through 3) contain the digital filter pass count. Bit 4 is set if this sample had an overload, bit 5 is set if this
sample corresponds to a trigger, bit 6 is set if this sample caused the input channel to assert trigger, and bit
7 is set if the input signal is above approximately half-scale. Bit 7 is only implemented on the E1432
inputs, not on the E1433 inputs.

E1432 151

E1432_SET_DAT A_SIZE(3) E1432_SET_DAT A_SIZE(3)

An alternative (and typically much more convenient) way to get information about the data is to enable
trailer data at the end of the block, usinge1432_set_append_status.

For the E1433 196 kHz input SCA, usingE1432_DAT A_SIZE_32or E1432_DAT A_SIZE_FLOAT32
will not work when the sample clock frequency (as set bye1432_set_clock_freq) is greater than 165 kHz,
when using all eight channels. Use eitherE1432_DAT A_SIZE_16or E1432_DAT A_SIZE_32_SERV, or
use fewer than eight channels, to work around this.

RESET VALUE
After a reset,sizeis set toE1432_DAT A_SIZE_16.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_append_status, e1432_set_data_format

152 E1432

E1432_SET_DELTA_ORDER(3) E1432_SET_DELTA_ORDER(3)

NAME
e1432_set_delta_order − Set the granularity of resampled time data
e1432_get_delta_order − Get the granularity of resampled time data

SYNOPSIS
SHORTSIZ16 e1432_set_delta_order(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 delta)
SHORTSIZ16 e1432_get_delta_order(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *delta)

DESCRIPTION
e1432_set_delta_ordersets the granularity of the resampled time data. This data is in the revolution
domain. Thedelta parameter is the spacing expressed as a fraction of a tachometer revolution (order) of
each element of the resampled data from the order tracking measurement. Resampled data calculation is
activated by thee1432_set_calc_datafunction.

e1432_get_delta_orderreturns the resampled time data spacing into the variable pointed to bydelta.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

deltaspecifies the resampled time data spacing.

NOTE: When doing an order track measurement, the following relationship must hold between these
parameters:

max_order <= blocksize * delta_order / 5.12

or an ERR1432_ILLEGAL_BLOCK_ORDER_COMBO error will be issued when the measurement
starts.

RESET VALUE
After a reset,delta is set to 0.1.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_delta_order_limits, e1432_set_blocksize, e1432_set_calc_data, e1432_set_max_order

E1432 153

E1432_SET_DECIMATION_BANDWIDTH(3) E1432_SET_DECIMATION_BANDWIDTH(3)

NAME
e1432_set_decimation_bandwidth − Set data decimation bandwidth
e1432_get_decimation_bandwidth − Get current data decimation bandwidth

SYNOPSIS
SHORTSIZ16 e1432_set_decimation_bandwidth(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 decBw)
SHORTSIZ16 e1432_get_decimation_bandwidth(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *decBw)

DESCRIPTION
This function is provided only for backward compatibility with the E1431 Host Interface library. All new
code should usee1432_set_spaninstead.

e1432_set_decimation_bandwidthsets the decimation bandwidth, of a single channel or group of channels
ID, to the value given indecBw. The span is derived from the decimation bandwidth, and sample clock
(Fs) as follows: span = Fs / (2.56 * 2**decBw).

Decimation allows data reduction on oversampled data, saving only those points needed to reconstruct the
waveform. A decimation of 2 keeps every other data point, a decimation of 4 keeps every fourth data point,
etc. The bandwidth of the data must be reduced at the same time to prevent aliasing.

e1432_get_decimation_bandwidthreturns the current value of the decimation bandwidth, of a single chan-
nel or group of channelsID, into a memory location pointed to bydecBw.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

decBwselects the bandwidth of the filter and the amount of decimation applied to the signal. The possible
values for this parameter range from0 to 9. This parameter may also be set with
e1432_set_decimation_filter.

RESET VALUE
After a reset,decBwis set to0, therefore leading to a full span of FS/2.56

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_span, e1432_set_decimation_filter

154 E1432

E1432_SET_DECIMATION_FILTER(3) E1432_SET_DECIMATION_FILTER(3)

NAME
e1432_set_decimation_filter − Set most decimation filter parameters

SYNOPSIS
SHORTSIZ16 e1432_set_decimation_filter(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 output,
SHORTSIZ16 state,
SHORTSIZ16 decBw)

DESCRIPTION
This function is provided only for backward compatibility with the E1431 Host Interface Library. All new
code should usee1432_set_span, e1432_set_decimation_output, ande1432_set_anti_alias_digitalinstead.

e1432_set_decimation_filtersets all of the parameters associated with the decimation filter section of an
E1432 or group of E1432s, except the filter settling time.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained by a call toe1432_create_channel_group, or
the ID of a single channel.

outputselects the type of output from the decimation filter. UsingE1432_ONEPASSfor this parameter
selects the output of the last filter in the chain. This is the normal operating mode of the filter. Using
E1432_MULTIPASS causes an output consisting of the time multiplexed outputs of all cascaded filters
equal to or narrower than the programmed bandwidth. This parameter may also be set with
e1432_set_decimation_output.

statedetermines the state of the digital anti-alias filter.E1432_ANTI_ALIAS_DIGITAL_ON enables it,
and E1432_ANTI_ALIAS_DIGITAL_OFF bypasses it. This parameter may also be set with
e1432_set_anti_alias_digital.

decBwselects the bandwidth of the filter and the amount of decimation applied to the signal. The possible
values for this parameter range from 0 to 9. This parameter may also be set with
e1432_set_decimation_bandwidth, but a better way to set the amount of decimation is to call
e1432_set_span.

RESET VALUE
After a reset,stateis set toE1432_ANTI_ALIAS_DIGITAL_ON , outputis set toE1432_ONEPASS, and
decBwis set to0 (i.e. maximum span).

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_anti_alias_digital, e1432_set_decimation_bandwidth, e1432_set_decimation_output,
e1432_set_span

E1432 155

E1432_SET_DECIMATION_OUTPUT(3) E1432_SET_DECIMATION_OUTPUT(3)

NAME
e1432_set_decimation_output − Set single or multi-pass filter output
e1432_get_decimation_output − Get current state of filter output

SYNOPSIS
SHORTSIZ16 e1432_set_decimation_output(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 output)
SHORTSIZ16 e1432_get_decimation_output(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *output)

DESCRIPTION
e1432_set_decimation_outputsets the filter output, of a single channel or group of channelsID, to single or
multi-pass, based on the value given inoutput.

e1432_get_decimation_outputreturns the current status of the filter output, of a single channel or group of
channelsID, into a memory location pointed to byoutput.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

outputselects the type of output from the digital filters. The digital filters consist of a cascaded chain of
sections, each decimating the data stream by a factor of two and reducing its bandwidth by a factor of two.

UsingE1432_ONEPASSfor this parameter selects the output of the last filter in the chain. This is the nor-
mal operating mode of the filter.

UsingE1432_MULTIPASS causes an output consisting of the time multiplexed outputs of all cascaded fil-
ters equal to or narrower than the programmed bandwidth. This mode is useful when gathering data for
synchronous analysis, or octave measurements.

The E1431 Host Interface library, but not the E1432 Host Interface library, allows an addition value forout-
put which enables both multi-pass and oversampled data. For the E1432 Host Interface library, this can be
achieved by usingE1432_MULTIPASS, and then callinge1432_set_decimation_oversampleto enable
oversampled data.

This parameter may also be set withe1432_set_decimation_filter.

When in the multi-pass mode on an E1432, the data size must be one of the 32-bit sizes (see
e1432_set_data_size). If the data size is set toE1432_DAT A_SIZE_32_SERV, then each data sample is
tagged with a 4 bitpasscount. The passcount is placed over the least significant data bits (bits 0 to 3) of the
32-bit data sample. This passcount can be used to decode which samples come from which span of data.
On an E1433, you are not required to use the 32-bit data size when in multi-pass mode, but generally multi-
pass mode is only useful when the data size isE1432_DAT A_SIZE_32_SERV.

Note: On an E1432, when operating in multi-pass mode and oversampled mode, the top span is limited to
10kHz and the number of channels is limited to eight. At spans below 10kHz the full 16 channels can be
used.

156 E1432

E1432_SET_DECIMATION_OUTPUT(3) E1432_SET_DECIMATION_OUTPUT(3)

RESET VALUE
After a reset,outputis set toE1432_ONEPASS.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_data_size, e1432_set_decimation_oversample, e1432_set_anti_alias_digital

E1432 157

E1432_SET_DECIMATION_OVERSAMPLE(3) E1432_SET_DECIMATION_OVERSAMPLE(3)

NAME
e1432_set_decimation_oversample − Set digital filter oversample
e1432_get_decimation_oversample − Get digital filter oversample

SYNOPSIS
SHORTSIZ16 e1432_set_decimation_oversample(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 oversample)
SHORTSIZ16 e1432_get_decimation_oversample(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *oversample)

DESCRIPTION
e1432_set_decimation_oversamplespecifies whether the digital filters of a set of channels should produce
oversampled output.

e1432_get_decimation_oversamplereturns the current status of the filter oversample, of a single channel or
group of channelsID, into a memory location pointed to byoversample.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

oversample selects whether the digital filters should produce oversampled output.
E1432_DECIMATION_OVERSAMPLE_OFF specifies non-oversampled output, which is what is nor-
mally desired. E1432_DECIMATION_OVERSAMPLE_ON specifies output that is oversampled by a
factor of two. This oversampling is only possible if the span is less than the top span for the current clock
frequency.

Note: On an E1432, when operating in multi-pass mode and oversampled mode, the top span is limited to
10kHz and the number of channels is limited to eight. At spans below 10kHz the full 16 channels can be
used.

RESET VALUE
After a reset,oversampleis set toE1432_DECIMATION_OVERSAMPLE_OFF .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_decimation_output, e1432_set_span, e1432_set_clock_freq

158 E1432

E1432_SET_DECIMATION_UNDERSAMP(3) E1432_SET_DECIMATION_UNDERSAMP(3)

NAME
e1432_set_decimation_undersamp − Set digital filter undersample amount
e1432_get_decimation_undersamp − Get digital filter undersample amount

SYNOPSIS
SHORTSIZ16 e1432_set_decimation_undersamp(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 undersamp)
SHORTSIZ16 e1432_get_decimation_undersamp(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *undersamp)

DESCRIPTION
This function is not needed by most normal users. It works only for the E1433 module, is useful only in
certain specific applications, and can reduce the alias protection normally provided by the E1433 module.

e1432_set_decimation_undersampcauses the input ADC to get run at a slower clock frequency than nor-
mal. The input ADC clock frequency is normally specified bye1432_set_clock_freq. When
e1432_set_decimation_undersampis used, the normal clock frequency is divided by the undersample
amount.

The slower "undersampled" clock frequency means that data is sampled at a slower rate, reducing the
amount of decimation filtering that must be done by the input signal processors to produce data at the span
specified bye1432_set_span. If the undersample amount is equal to the total amount of decimation that
must be done, then the input signal processors will not have to do any decimation filtering. This setting has
the advantage of not running the data through the normal non-linear-phase decimation filters, which can be
useful for time-domain measurements.

e1432_get_decimation_undersampreturns the current amount of the undersampling, of a single channel or
group of channelsID, into a memory location pointed to byundersamp.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

undersampspecifies the amount of undersampling. A value of 1 means no undersampling. Higher values
specify more undersampling. This undersampling is supported only the the E1433 module. A value greater
than 1 will result in an error on an E1432 module.

The undersampamount will be rounded up to the next highest power of two. The resulting undersample
amount must not be larger than 16, or an error will be produced. In addition, if the undersample reduces
the effective ADC clock frequency to less than 7812.5 Hz (the minimum specified by the ADC manufac-
turer), an error will be produced.

The undersample amount must not be larger than the amount of decimation needed to produce data at the
current span. The undersampling can be done when the module is producing "oversampled" data (see
e1432_set_decimation_oversample). In this case, the undersample amount must belessthan the amount of
decimation needed to produce data at the current span, so that the input decimation filters run at least once,
so that oversampled data can be produced.

As an example, suppose the clock frequency is 65536 Hz and the current span is 6400 Hz. The data rate is
6400 * 2.56 = 16384 samples per second, and the decimation filters must do two passes of decimate-by-

E1432 159

E1432_SET_DECIMATION_UNDERSAMP(3) E1432_SET_DECIMATION_UNDERSAMP(3)

two, for a total decimation of four, to produce that. In this case, the undersample value can be 1, 2, or 4.
The value of 4 causes no decimation filtering to take place. If oversample is turned on, then the undersam-
ple value must be either 1 or 2.

Undersampling by more than one has the following limitations and drawbacks:
* It works only on E1433 modules
* No zoom can be done
* Alias protection is reduced, potentially by a great deal

Because of these drawbacks, this setting is probably only useful in special circumstances.

Even if the undersample amount prevents the non-linear-phase decimation filters from being used, the ADC
itself has a linear-phase digital filter which can’t be disabled. This is similar to all Delta-Sigma converters,
which all have a built-in anti-alias filter.

Because these ADC filters are linear-phase, they produce less distortion of the input time wav eform than
typical non-linear-phase decimation filters. For this reason, they are generally preferred for time-domain
applications.

The undersampling reduces alias protection, but in ways that may not be a problem for many applications.
The aliasing isonly at 32 times the effective sample clock frequency, due to the ADC’s built-in digital filter.

For example, suppose the sample clock frequency is set to 65536 Hz, and the undersample amount is 2.
The effective sample rate of the data produced by the input ADCs is then 32768 Hz. Any potential alias
products would be at 32 * 32768, which is about 1 MHz. Most normal measurement signals have no
energy at this frequency, so the aliasing is probably not a problem.

Furthermore, even if there was energy out at this frequency, it is still somewhat attenuated by the analog
anti-alias filters. The amount of attenuation varies with clock frequency. Typical alias attenuation to expect
is given in the following table.

Typical Undersample Alias Attenuation

Effective Minimum Typical Alias
Clock Freq Alias Freq Protection

65536 Hz 2 MHz >90 dB
32768 Hz 1 MHz 70 dB
16384 Hz 524 kHz 35 dB
8192 Hz 262 kHz 0 dB

RESET VALUE
After a reset,undersampis set to 1.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_decimation_output, e1432_set_decimation_oversample, e1432_set_span, e1432_set_clock_freq,
e1432_set_anti_alias_digital

160 E1432

E1432_SET_DUTY_CYCLE(3) E1432_SET_DUTY_CYCLE(3)

NAME
e1432_set_duty_cycle − Set source burst duty cycle
e1432_get_duty_cycle − Get source burst duty cycle

SYNOPSIS
SHORTSIZ16 e1432_set_duty_cycle(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 duty_cycle)
SHORTSIZ16 e1432_get_duty_cycle(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *duty_cycle)

DESCRIPTION
e1432_set_duty_cyclesets the burst duty cycle for a source channel. This duty cycle is used only when the
source mode (set bye1432_set_source_mode) is a burst mode, such asE1432_SOURCE_MODE_BSINE,
or E1432_SOURCE_MODE_BRAND.

e1432_get_duty_cyclereturns the current duty cycle for a single channel or group of channelsID, into a
memory location pointed to byduty_cycle.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

duty_cyclespecifies the duty cycle for a burst. The duty cycle is a fraction that must be between zero and
one. The total burst period is equal to the current blocksize; the duty cycle specifies the fraction of that
burst that the source is on. If the source ramp rate is non-zero, the source will ramp up and downwithin the
duty-cycle portion of the burst period.

Obviously, this function is not useful when talking to input or tach channels. Only source channels have a
burst duty cycle.

RESET VALUE
After a reset,duty_cycleis set to 0.5.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_blocksize, e1432_set_ramp_rate, e1432_set_source_mode

E1432 161

E1432_SET_ENABLE(3) E1432_SET_ENABLE(3)

NAME
e1432_set_enable − Enable or disable data for an input channel or group
e1432_get_enable − Get group or channel enable value

SYNOPSIS
SHORTSIZ16 e1432_set_enable(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 data_type, SHORTSIZ16 setting)
SHORTSIZ16 e1432_get_enable(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 data_type, SHORTSIZ16 *setting)

DESCRIPTION
This function enables or disables data from an input channel. If data is enabled, then
e1432_block_available specifies when data is available and the data transfer functions
(e1432_read_xxx_data) are used to read the data. If data is disabled, data from the specified channel is not
made available to the host computer.

This parameter can be changed while a measurement is running, to allow the host computer to look at only
some of the data being collected by the E1432 module. Compare this withe1432_set_active, which com-
pletely enables or disables a channel and which can’t be changed while a measurement is running.

e1432_get_enablereturns the current enable value for a channel or group.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

If the ID is a channel ID, that one channel is set tosetting.

data_type specifies what type of data is being enabled or disabled. The valid values are
E1432_ENABLE_TYPE_TIME , E1432_ENABLE_TYPE_FREQ,
E1432_ENABLE_TYPE_RESAMPLE andE1432_ENABLE_TYPE_ORDER. The type of data that is
available for transfer to the host is determined by thee1432_set_calc_datafunction, which must be called
before the start of a measurement. If the data type has not been made available with this function, then
enabling its transmission to the host will be ignored. For instance, if resampling calculations are not being
done for an input channel, then the enable value for E1432_ENABLE_TYPE_RESAMPLE for that channel
will be ignored.

The setting can be eitherE1432_ENABLE_ON or E1432_ENABLE_OFF. The default value is
E1432_ENABLE_ON.

This parameter is used only by input channels. Attempting to set or change it for tach or source channels
will result in an error.

If a particular E1432_ENABLE_TYPE_xxx is set toE1432_ENABLE_ON, then the user wants to
receive data of that type for the channels referred to by theID. If the E1432_ENABLE_TYPE_xxx is set
to E1432_ENABLE_OFF, then the user does not want to receive data of that type for the channels referred
to by theID.

This enable setting for a particular channel is used only if the channel is active, as set bye1432_set_active.
(Inactive input channels never produce data, are not sent to local bus, and can’t trigger.) Changing
active/inactive on a channels stops a measurement. In contrast, the enable setting can be changed while a
measurement is running without stopping the measurement.

The "enable" setting for a particular channel is used only for VME data transfers. The enable setting is
completely ignored for local bus transfers, so all active channels are always transferred to the local bus.

162 E1432

E1432_SET_ENABLE(3) E1432_SET_ENABLE(3)

The "enable" setting has no effect on input triggering - an input can trigger whether data is enabled or not.

If a measurement is running, any changes to the "enable" setting take place immediately. (If the E1432 is in
the MIDDLE of transferring a scan of data to the host, then an error is generated and the changes to the
"enable" settings are not made.) If the E1432 has already asserted block available but has not started trans-
ferring data to the host, then the changedoestake place immediately.

If e1432_set_enableis used to disable all data from all channels in a group, then block available will no
longer get asserted inE1432_IRQ_STATUS2_REG, and e1432_block_availablewill return 0 for any
channel that is disabled.

If interrupts are being used for data transfer, then interrupts should probably be blocked around the call to
e1432_set_enable, so that the interrupt handler can know if the new enable settings are in effect.

The E1432 module ignores the "enable" settings when deciding whether to assert an interrupt. This means
that a BLOCK READY interrupt will happen even when all data from all channels is disabled. This may
seem undesirable at first, but it is actually quite useful when doing interrupt-driven multi-module measure-
ments. Because the interrupt will happen even if all channels in a module are disabled, a single module can
be used to generate the BLOCK READY interrupts, even when all of the channels in that module are dis-
abled. It is the responsibility of the application tonot call e1432_read_xxx_datawhen there is not actually
any data available. Note thate1432_block_availablewill correctly return 0 for the disabled channels, and 0
for the group ID, so this function can be used inside an interrupt handler to determine if data is really avail-
able.

CORNER CASES
Unfortunately, there are a couple corner cases where the data enable functions don’t work as cleanly as they
should, and unfortunately it is difficult to explain these corner cases in a simple way. Fortunately, these
really are corner cases which typical applications will probably never see or care about.

These corner cases are an issue only if the application tries to disableall data fromall channels in one of
the modules of a multi-module measurement.Single-module measurements are not affected.

Corner Case 1

If an application disables all data from all channels of a module in a multi-module measurement, then there
is no data for the host application to read out of that module. But the module must still remain synchro-
nized with other modules in the multi-module measurement that do have enabled data. To ensure synchro-
nization, thee1432_block_availablefunction does some behind-the-scenes communication with the mod-
ules. When a scan of data is ready, thee1432_block_availablefunction tells the completely disabled mod-
ule to pretend that data was just read from it. Then, when the application reads data from the other modules
in the measurement, all the modules will stay synchronized.

This is all fine, but it means thatif there are any completely disabled modules, once
e1432_block_availablehas returned true (and has therefore told completely disabled modules to act
like data was already read), then it is too late to change the enabled channels. If an application tries to
enable data from the completely disabled module at this time, the modules may not stay synchronized, and
possibly the measurement may hang waiting for the next block available.

One reason this is not typically a problem is that applications typically read data immediately after calling
e1432_block_available, if the function tells them that data is ready.

Corner Case 2

If an application disables all data from all channels of all modules in multi-module measurement, then there

E1432 163

E1432_SET_ENABLE(3) E1432_SET_ENABLE(3)

is no data for the host to read at all. In this case,e1432_block_availablewill always return zero, because
no data is ever ready for the host.

However, the modules still need to stay synchronized, so that when data is eventually enabled by the appli-
cation, that data is synchronized properly.

For a multi-module measurement, this synchronization is performed bye1432_block_available. So it is
necessary for the application to regularly calle1432_block_availableev en though no data is enabled.

One reason this is not typically a problem is that few applications actually try to disable all data from all
channels. Another reason this is not typically a problem is that many application already call
e1432_block_availablefrequently. Even an interrupt-driven application will not generally have problems
with this, because the modules will continue to generate data available interrupts even though no data is
enabled, so the interrupt handler will typically end up callinge1432_block_available.

RESET VALUE
See above.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_block_available, e1432_create_channel_group, e1432_set_enable, e1432_e1431_diff,
e1432_set_calc_data

164 E1432

E1432_SET_FIFO_SIZE(3) E1432_SET_FIFO_SIZE(3)

NAME
e1432_set_fifo_size − Set data fifo size e1432_get_fifo_size − Get current data fifo size
e1432_get_fifo_size_current_max − Get current maximum fifo size

SYNOPSIS
SHORTSIZ16 e1432_set_fifo_size(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 fifo_size)
SHORTSIZ16 e1432_get_fifo_size(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *fifo_size)
SHORTSIZ16 e1432_get_fifo_size_current_max(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *max)

DESCRIPTION
e1432_set_fifo_sizesets the data fifo size, of a single channel or group of channelsID, to the value given in
fifo_size.

e1432_get_fifo_sizereturns the current value of the measurement fifo_size, of a single channel or group of
channelsID, into a memory location pointed to byfifo_size.

e1432_get_fifo_size_current_maxreturns the maximum valid value for the fifo size, given the amount of
DRAM available, the current number of active channels, and the current settings of the calc data, data size,
data port, append status, and fifo size parameters. The value is returned into the memory location pointed
to bymax. If the ID is a group ID, thene1432_get_fifo_size_current_maxreturns the minimum of the max-
imum fifo sizes of the modules in the group.

This same "current maximum fifo size" can also be used to determine the current maximum value for the
pre-trigger delay (set bye1432_set_trigger_delay). In addition, the maximum value for the local bus trans-
fer size (set bye1432_set_xfer_size) is equal to the maximum fifo size, minus enough room for a data
trailer if data trailers are enabled.

To get the maximum value for blocksize, usee1432_get_blocksize_current_max.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

fifo_sizeselects the number of sample points in each active channel’s data fifo. The minimum valid value is
zero, which means to make the data fifo as large as possible. If the value is not zero, it must be at least as
large as theblocksize(seee1432_set_blocksize). The maximum valid value depends on how much RAM is
available and how many channels are active in the module, and can be found by using
e1432_get_fifo_size_current_max.

If the fifo_sizeis not zero, it is rounded up to the next power of two greater than or equal to the specified
value.

If this parameter is changed while a measurement is running, it will not have any effect until the start of the
next measurement.

E1432 165

E1432_SET_FIFO_SIZE(3) E1432_SET_FIFO_SIZE(3)

RESET VALUE
After a reset, thefifo_sizeis set tozero.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_blocksize, e1432_get_blocksize_current_max, e1432_get_fifo_size_limits,
e1432_set_trigger_delay, e1432_set_xfer_size

166 E1432

E1432_SET_FILTER_FREQ(3) E1432_SET_FILTER_FREQ(3)

NAME
e1432_set_filter_freq − Set filter frequency of E1432 channels
e1432_get_filter_freq − Get filter frequency of E1432 channels

SYNOPSIS
SHORTSIZ16 e1432_set_filter_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 filter_freq)
SHORTSIZ16 e1432_get_filter_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *filter_freq)

DESCRIPTION
e1432_set_filter_freqsets the filter frequency, of a single channel or group of channelsID, to the value
given in filter_freq. Normally this is the cutoff frequency of the analog filter on the output of a source, or
the cutoff frequency of an input filter on a charge input.

e1432_get_filter_freqreturns the current value of the filter frequency, of a single channel or group of chan-
nelsID, into a memory location pointed to byfilter_freq.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

filter_freq is the filter frequency in Hertz.

For input channels, filter frequency is not generally used. Most input channels have a fixed analog filter
that can’t be adjusted. However, the Charge Break-out Box has a 2 kHz input filter available on the charge
input. This function can be used to switch this 2 kHz filter in and out.

For source channels, the filter frequency generally specifies the cutoff frequency of the analog filter at the
output of the source. For the Option 1D4 single-channel source board, this function can be used to
switched between a 6.4 kHz and a 25.6 kHz output filter.

For tach channels, filter frequency is not generally used.

RESET VALUE
After a reset, thefilter_freq is set to the minimum valid filter frequency for each channel, except source
channels which are set to 25.6 kHz.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_filter_freq_limits, e1432_bob

E1432 167

E1432_SET_FILTER_SETTLING_TIME(3) E1432_SET_FILTER_SETTLING_TIME(3)

NAME
e1432_set_filter_settling_time − Change default filter settling time
e1432_get_filter_settling_time − Get current filter settling time

SYNOPSIS
SHORTSIZ16 e1432_set_filter_settling_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 setlTime)
SHORTSIZ16 e1432_get_filter_settling_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *setlTime)

DESCRIPTION
e1432_set_filter_settling_timesets the filter settling time, of a single channel or group of channelsID, to
the value given insetlTime.

e1432_get_filter_settling_timereturns the current value of the filter settling time, of a single channel or
group of channelsID, into a memory location pointed to bysetlTime.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

setlTimeis the time given to the filter to settle its output. This time has an impact on the time spent in the
SETTLING state of the measurement loop: The E1432 will wait for that time to elapse, before moving to
the IDLE state. This parameter is given in seconds, and may be set to any value between0.0 seconds, and
10,000.0seconds.

The actual settling time will be the greater ofsetlTimeand the internally computed settling time, which
accounts for ADC settling and digital filter settling.

The two primary uses for this functionality are to handle AC coupling settling and Octave band settling,
both of which are not handled by the internally computed settling time, due to the large times which may be
involved.

AC coupling settling for the E1432 front ends should be set to 2.2 seconds for full protection.

Worst case AC coupling settling for the E1433 should be 5 seconds for the slewing of the active coupling
plus 2.1/coupling_freq, wherecoupling_freqis set by thee1432_set_coupling_freqfunction.

Settling for the lowest octave band,octave_start_freq, as set bye1432_set_octave_start_freq, should be
7.1/octave_start_freqfor full octave measurements and 21.6/octave_start_freqfor one third octave mea-
surements. Settling in exponential Octave average mode, as set bye1432_set_octave_avg_mode, should be
an additional 7 times the exponential average time constant, as set bye1432_set_octave_time_const.
Allowing for settling is of particular importance to obtaining accurate measurement results for the Octave
hold modes, as set bye1432_set_octave_hold_mode.

RESET VALUE
After a reset,setlTimeis set to0.0samples.

168 E1432

E1432_SET_FILTER_SETTLING_TIME(3) E1432_SET_FILTER_SETTLING_TIME(3)

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_filter_settling_time_limits

E1432 169

E1432_SET_INPUT_HIGH(3) E1432_SET_INPUT_HIGH(3)

NAME
e1432_set_input_high − Set source of input signal
e1432_get_input_high − Get current source of input signal

SYNOPSIS
SHORTSIZ16 e1432_set_input_high(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 high)
SHORTSIZ16 e1432_get_input_high(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *high)

DESCRIPTION
e1432_set_input_highsets the input to the ADC, of a single channel or group of channelsID, to the value
given inhigh.

e1432_get_input_highreturns the current input high selection, of a single channel or group of channelsID,
into a memory location pointed to byhigh.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

high controls the analog input to the input channel.E1432_INPUT_HIGH_NORMAL selects the front
panel connector. E1432_INPUT_HIGH_GROUNDED grounds the input.
E1432_INPUT_HIGH_CALIN selects the module’s CALIN line.E1432_INPUT_HIGH_BOB_CALIN
selects the module’s CALIN line via the cal connection in a break-out box.
E1432_INPUT_HIGH_CALOUT is the same asE1432_INPUT_HIGH_NORMAL , except that the
input is also connected to the module’s CALOUT line.

For backwards compatibility with the E1431 host interface library, the following obsolete values forhigh
are also accepted: E1432_INPUT_SOURCE_BNC, which is the same as
E1432_INPUT_HIGH_NORMAL ; E1432_INPUT_SOURCE_SUMBUS, which is the same as
E1432_INPUT_HIGH_CALIN ; and E1432_INPUT_SOURCE_ZERO, which is the same as
E1432_INPUT_HIGH_GROUNDED.

On input channels, onlyNORMAL , GROUNDED, CALIN , and BOB_CALIN are supported. The
BOB_CALIN value is valid only when a smart break-out box (such as a Charge Break-out Box or Micro-
phone Break-out Box) is connected to the input.

On tach channels, onlyNORMAL andCALOUT are supported. TheCALOUT setting can be used to
monitor the analog signal connected to a tach input. To do this, the module’s CALOUT line must be con-
nected back to the module’s CALIN line, usinge1432_set_calin. In addition, an input channel must be told
to monitor the CALIN line by usinge1432_set_input_highon the input channel. Then the data collected
by the input channel will show the signal on the tach input. Because there is only one CALOUT line, only
one tach channel may drive the CALOUT line at any one time.

It is also possible to set up a tach channel to drive the VXI sumbus, and have the sumbus drive CALIN, and
have an input channel monitor CALIN. This allows an input channel to monitor a tach channel from a dif-
ferent E1432 module, but results in a larger DC offset error and more noise. To make this work properly,
passE1432_CALIN_SUMBUS_TACH (not E1432_CALIN_SUMBUS) to e1432_set_calin, to ensure
that the input channel can figure out the correct scale factor.

When monitoring tach signals via the CALIN line using either of the above methods, the tach signal
bypasses most of the input range setting hardware. Because of this, the tach signal level that can be moni-
tored is limited.

170 E1432

E1432_SET_INPUT_HIGH(3) E1432_SET_INPUT_HIGH(3)

On an E1432 51.2 kHz input SCA, the maximum tach signal level when the tach trigger level is zero is
about 6 volts. On an E1433 196 kHz input SCA, the maximum tach signal level when the tach trigger level
is zero is about 2 volts. If the tach trigger level is larger than +-4.9 volts, then the tach board attenuates the
tach signal, resulting in a five times greater range that can be monitored (30 volts for E1432, 10 volts for
E1433).

This parameter is not used for source channels.

RESET VALUE
After a reset,high is set toE1432_INPUT_HIGH_NORMAL .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_scale, e1432_set_analog_input, e1432_set_calin

E1432 171

E1432_SET_INPUT_LOW(3) E1432_SET_INPUT_LOW(3)

NAME
e1432_set_input_low − Set grounding mode of input signal
e1432_get_input_low − Get grounding mode of input signal

SYNOPSIS
SHORTSIZ16 e1432_set_input_low(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 low)
SHORTSIZ16 e1432_get_input_low(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *low)

DESCRIPTION
e1432_set_input_lowsets the grounding mode, of a single channel or group of channelsID, to the value
given in low.

e1432_get_input_lowreturns the current input low selection, of a single channel or group of channelsID,
into a memory location pointed to bylow.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

low controls the analog input to the input channel.E1432_INPUT_LOW_GROUNDED grounds the low-
side of the channel.E1432_INPUT_LOW_FLOATING lets the low-side of the channel float, making the
input a differential input.

For backwards compatibility with the E1431 host interface library, the following obsolete values forlow are
also accepted:E1432_INPUT_GROUNDED, which is the same asE1432_INPUT_LOW_GROUNDED;
andE1432_INPUT_FLOATING , which is the same asE1432_INPUT_LOW_FLOATING .

Only input channels support the setting the grounding mode - source and tach channels are never floating,
and are always grounded.

If a "smart" break-out box is attached to the channel, such as the E3242A Charge break-out box or the
E3243A Microphone break-out box, then this function will tell the break-out box to set the grounding
appropriately.

However, if a passive break-out box is attached (or no break-out box), there is no way to tell the break-out
box what grounding to use, nor is there any way to ask the break-out box what the current grounding mode
is. In this case, the parameter toe1432_set_input_lowis accepted and simply saved - no hardware settings
are changed and no errors are generated. In this case, a call toe1432_get_input_lowwill return the most
recent value given toe1432_set_input_low.

RESET VALUE
After a reset,low is set toE1432_INPUT_LOW_FLOATING .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_input_high

172 E1432

E1432_SET_INPUT_MODE(3) E1432_SET_INPUT_MODE(3)

NAME
e1432_set_input_mode − Set input mode to volt or ICP
e1432_get_input_mode − Get current state of input mode

SYNOPSIS
SHORTSIZ16 e1432_set_input_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode)
SHORTSIZ16 e1432_get_input_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mode)

DESCRIPTION
e1432_set_input_modesets the input mode, of a single channel or group of channelsID, to the value given
in mode.

e1432_get_input_modereturns the current value of the input mode, of a single channel or group of chan-
nelsID, into a memory location pointed to bymode.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

modedetermines the input mode in the front end.E1432_INPUT_MODE_VOLT sets the volt input
mode. E1432_INPUT_MODE_ICP sets the ICP input mode.E1432_INPUT_MODE_CHARGE sets
the input mode to charge-amp mode.E1432_INPUT_MODE_MIC sets the input mode to microphone
mode. E1432_INPUT_MODE_MIC_200V sets the input mode to microphone mode with 200V supply
turned on.

This parameter may also be set withe1432_set_analog_input.

If there is not a smart break-out box connected to the channel, then changing the input mode for one chan-
nel causes the input mode for all channels within that SCA to change. If there is a smart break-out box pre-
sent, then the input mode applies only to the specific channels specified.

E1432_INPUT_MODE_CHARGE is valid only if a Charge break-out box is attached to the channel spec-
ified. In this mode, the full-scale setting is controlled by thee1432_set_range_chargefunction, which
specifies the full scale in picoCoulombs. In this mode, all input data for this channel is in terms of pico-
Coulombs rather than volts. Seee1432_bobfor more information about break-out boxes.

E1432_INPUT_MODE_MIC and E1432_INPUT_MODE_MIC_200V are valid only if a Microphone
break-out box is attached to the channel specified. In these two modes, the full-scale setting is controlled
by thee1432_set_range_mikefunction. Seee1432_bobfor more information about break-out boxes.

There is not actually an ICP current source inside the E1432/E1433 input SCAs. Instead, a breakout box
containing an ICP current source can be attached to the input. When this ICP breakout box is attached,
then setting themodeto E1432_INPUT_MODE_ICP enables the ICP current source in the breakout box.
If there is no ICP breakout box attached to the input, then settingE1432_INPUT_MODE_ICP does noth-
ing.

RESET VALUE
After a reset,modeis set toE1432_INPUT_MODE_VOLT.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 173

E1432_SET_INPUT_MODE(3) E1432_SET_INPUT_MODE(3)

SEE ALSO
e1432_set_analog_input, e1432_set_range, e1432_set_range_charge, e1432_set_range_mike, e1432_bob

174 E1432

E1432_SET_INPUT_OFFSET(3) E1432_SET_INPUT_OFFSET(3)

NAME
e1432_set_input_offset − Set input offset voltage
e1432_get_input_offset − Get current input offset voltage

SYNOPSIS
SHORTSIZ16 e1432_set_input_offset(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 input_offset)
SHORTSIZ16 e1432_get_input_offset(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *input_offset)

DESCRIPTION
e1432_set_input_offsetsets the input offset voltage, of a single channel or group of channelsID, to the
value given ininput_offset.

e1432_get_input_offsetreturns the current value of the input offset voltage, of a single channel or group of
channelsID, into a memory location pointed to byinput_offset.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

input_offsetis the desired input offset in volts. This voltage is subtracted from the input signal, and can be
used to remove a constant DC level from an input signal. This can be used instead of AC coupling if the
signal’s DC lev el is known ahead of time, thus avoiding AC filter settling times. It can also be used in addi-
tion to AC coupling, to help extend the range of the AC coupling filter and to help the AC coupling filter
settle more quickly.

The input offset voltage is used only for input channels - source and tach channels do not have this feature.

The input offset voltage is only controllable on E1433 196 kHz input channels. E1432 51.2 kHz input
channels do not have hardware to implement this feature. Any attempt to set the input offset voltage of an
E1432 input channel will generate an error. Howev er,e1432_get_input_offsetwill return 0.0 for E1432
input channels.

The input offset voltage is settable over a continuous range of 0 volts to 20 volts. The resolution is approxi-
mately 5 mV. Neg ative voltages are not valid. The E1433 196 kHz input hardware will clip the input sig-
nal if the signal exceeds about 21 volts, regardless of the input offset voltage setting. Unfortunately, this
clipping is not detected by the hardware, so there is no overload indication in this case.

The input offset voltage is normally only useful when the input mode is voltage or ICP mode (see
e1432_set_input_mode). In microphone or charge input modes, there is typically no offset that needs to be
subtracted out. This function will still "work" when the input mode is microphone or charge mode, how-
ev er the voltage that is subtracted out will not necessarily match the parameter that is applied, due to scal-
ing performed by the break-out box. Therefore, it’s typically best to set the input offset voltage to zero in
microphone or charge modes.

RESET VALUE
After a reset, input channels have theinput_offsetset to 0 volts.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 175

E1432_SET_INPUT_OFFSET(3) E1432_SET_INPUT_OFFSET(3)

SEE ALSO
e1432_get_input_offset_limits, e1432_set_coupling, e1432_set_input_mode

176 E1432

E1432_SET_INTERNAL_DEBUG(3) E1432_SET_INTERNAL_DEBUG(3)

NAME
e1432_set_internal_debug − Set E1432 internal firmware debug level
e1432_get_internal_debug − Get E1432 internal firmware debug level

SYNOPSIS
SHORTSIZ16 e1432_set_internal_debug(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 lev)
SHORTSIZ16 e1432_get_internal_debug(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *lev)

DESCRIPTION
e1432_set_internal_debugsets the internal debug level of the firmware executing in the E1432 modules
referred to byID.

e1432_get_internal_debugreturns the current value of the internal firmware debug level, in the memory
location pointed to by level.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

lev is the firmware debug level.

The firmware debug level determines how much information the internal firmware tries to print out as it
executes. This use useful only for developers, and even then it is not always useful.

The internal debug value is a bit-mask, where each bit has a separate meaning. As the firmware gets opti-
mized, some of these debugging bits have been eliminated. At this point, there are only a few bits that are
still useful:

Internal Debug Bit Definitions

Bit Meaning

0x00000200 Print host commands and parameters
0x00000400 Print measurment state changes
0x00004000 Print source driver info
0x00008000 Print source register accesses

The printout from the firmware goes to a buffer inside the E1432 module. If nothing is monitoring this
buffer, then the printout is just ignored and there is no point in setting the firmware debug level. Use the
e1432monprogram to monitor the printout buffer.

RESET VALUE
After a reset,lev is set to0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_debug_level, e1432_trace_level, e1432_print_errors, e1432_get_internal_debug_limits

E1432 177

E1432_SET_INTERRUPT(3) E1432_SET_INTERRUPT(3)

NAME
e1432_set_interrupt − Set all interrupt parameters

SYNOPSIS
SHORTSIZ16 e1432_set_interrupt(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 priority, SHORTSIZ16 mask)

DESCRIPTION
e1432_set_interruptsets all parameters associated with the interrupt capability of an E1432 or group of
E1432s.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

priority specifies which of the seven VME interrupt lines to use; it is not actually a priority at all, it just
specifies which line to use. The only legal values are 0 through 7. Specifying 0 turns the interrupt off.
This parameter may also be set withe1432_set_interrupt_priority.

maskspecifies the mask of events on which to interrupt. This mask is created by ORing together various
condition bits. Refer toe1432_set_interrupt_maskfor the definition of the conditions which may be part of
the mask. This parameter may also be set withe1432_set_interrupt_mask.

RESET VALUE
After a reset,priority is set to0 (none), andmaskis set to0 (all causes masked).

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_reenable_interrupt, e1432_set_interrupt_mask, e1432_set_interrupt_priority

178 E1432

E1432_SET_INTERRUPT_MASK(3) E1432_SET_INTERRUPT_MASK(3)

NAME
e1432_set_interrupt_mask − Set interrupt mask
e1432_get_interrupt_mask − Get current interrupt mask

SYNOPSIS
SHORTSIZ16 e1432_set_interrupt_mask(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mask)
SHORTSIZ16 e1432_get_interrupt_mask(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mask)

DESCRIPTION
e1432_set_interrupt_masksets the interrupt mask, of a single channel or group of channelsID, to the value
given inmask.

e1432_get_interrupt_maskreturns the current value of the interrupt mask, of a single channel or group of
channelsID, into a memory location pointed to bymask.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

mask specifies the mask of events on which to interrupt. This parameter may also be set with
e1432_set_interrupt. This mask is created by ORing together the various conditions defined in the follow-
ing table (this table is also found on thee1432_intr(5)manual page).

Interrupt Mask Bit Definitions

Define (in e1432.h) Description

E1432_IRQ_BLOCK_READY Scan of data ready in FIFO
E1432_IRQ_MEAS_ERROR FIFO overflow or tach buffer overflow
E1432_IRQ_MEAS_STATE_CHANGE Measurement state machine changed state
E1432_IRQ_MEAS_WARNING Measurement warning
E1432_IRQ_OVERLOAD_CHANGE Overload status changed
E1432_IRQ_SRC_STATUS Source channel interrupt
E1432_IRQ_TACHS_AVAIL Raw tach times ready for transfer to other modules
E1432_IRQ_TRIGGER Trigger ready for transfer to other modules

The E1432_IRQ_SRC_STATUSinterrupt is used for source channel overload, overread, underrun, and
shutdown. When the source is in arb data mode, this interrupt is also used for the "ready for arb data" inter-
rupt.

TheE1432_IRQ_MEAS_ERRORcurrently is used only for a FIFO overflow. This normally can happen
only when the module is in continuous mode (seee1432_set_data_mode). This will interrupt as soon as
the FIFO overflows, but note that the FIFO still has useful data in it which can still be read by the
e1432_read_xxx_datafunctions. e1432_block_availablewill not indicate that a FIFO overflow has
occurred until all of the remaining data is read out of the FIFO. This bit is also used to indicate a raw tach
buffer overflow, which is indicated by theE1432_STATUS2_TACH_OVERFLOW bit being set in the sta-
tus register.

A secondE1432_IRQ_MEAS_ERROR interrupt will happen after all data has been read out of a FIFO

E1432 179

E1432_SET_INTERRUPT_MASK(3) E1432_SET_INTERRUPT_MASK(3)

that previously overflowed. This can be used to tell an application that no more data will be available, so
the application can stop the measurement. For this secondE1432_IRQ_MEAS_ERROR interrupt, the
E1432_IRQ_STATUS2_REGwill have theE1432_STATUS2_FIFO_EMPTIEDbit set in it.

Once the mask has been set, and an interrupt occurs, the cause of the interrupt is obtained by reading the
E1432_IRQ_STATUS2_REGregister. The bit position of the interrupt mask and status registers match so
the defines can be used to set and check IRQ bits. TheE1432_IRQ_STATUS2_REGmay have bits set for
things that are not enabled to interrupt using thise1432_set_interrupt_maskfunction, so the register value
should be binary-ANDed with the mask setting if you must determine exactly what caused the interrupt.

Once an interrupt occurs, the module will not interrupt again untile1432_reenable_interrupt()is called.

RESET VALUE
After a reset,maskis set to0 (all causes disabled).

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_block_available, e1432_reenable_interrupt, e1432_set_interrupt, e1432_check_src_arbrdy,
e1432_check_src_shutdown, e1432_check_src_overload, e1432_check_src_overread,
e1432_check_src_underrun, e1432_intr(5), e1432_get_meas_warning

180 E1432

E1432_SET_INTERRUPT_PRIORITY(3) E1432_SET_INTERRUPT_PRIORITY(3)

NAME
e1432_set_interrupt_priority − Set interrupt priority
e1432_get_interrupt_priority − Get current interrupt priority

SYNOPSIS
SHORTSIZ16 e1432_set_interrupt_priority(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 priority)
SHORTSIZ16 e1432_get_interrupt_priority(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *priority)

DESCRIPTION
e1432_set_interrupt_prioritysets which VME interrupt line to use when interrupting. It is not actually a
priority level, it just specifies which line to use.

e1432_get_interrupt_priorityreturns the current value of the interrupt priority, of a single channel or group
of channelsID, into a memory location pointed to bypriority.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

priority specifies which of the seven VME interrupt lines to use. The only legal values are 0 through 7.
Specifying 0 turns the interrupt off. This parameter may also be set withe1432_set_interrupt.

RESET VALUE
After a reset,priority is set to0 (none).

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_interrupt, e1432_get_interrupt_priority_limits, e1432_intr(5)

E1432 181

E1432_SET_LBUS_MODE(3) E1432_SET_LBUS_MODE(3)

NAME
e1432_set_lbus_mode − Set mode for Local Bus
e1432_get_lbus_mode − Get current mode for Local Bus

SYNOPSIS
SHORTSIZ16 e1432_set_lbus_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode)
SHORTSIZ16 e1432_get_lbus_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mode)

DESCRIPTION
e1432_set_lbus_modesets the Local Bus to one of five settings:append, generate, insert, pipe, or consume.

e1432_get_lbus_modereturns the current setting.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

modemust be one of the following:

E1432_LBUS_MODE_GENERATEcauses the module to ignore and throw away any data that comes in
(from the left) and to send its own data out (to the right). The local bus data stream isgeneratedby the
module.

E1432_LBUS_MODE_PIPEcauses the module to send out all data that comes in. No additional data
generated by the module is added to the local bus data stream. The local bus data stream ispipedthrough
the module.

E1432_LBUS_MODE_INSERT causes the module to send out its own data, followed by all data that
comes in. The module’s data isinsertedat the beginning of the local bus data stream.

E1432_LBUS_MODE_APPENDcauses the module to send out all data that comes in, followed by its
own data. The module’s data isappendedto the end of the local bus data stream.

E1432_LBUS_MODE_CONSUMEcauses the module to keep the data that comes in, and not send any
data out. The local bus data stream isconsumedby this module.

RESET VALUE
After a reset the Local Bus is set toE1432_LBUS_MODE_PIPE.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_reset_lbus, e1432_set_data_port

182 E1432

E1432_SET_MAX_ORDER(3) E1432_SET_MAX_ORDER(3)

NAME
e1432_set_max_order − Set the upper limit for resampled time data
e1432_get_max_order − Get the upper limit for resampled time data

SYNOPSIS
SHORTSIZ16 e1432_set_max_order(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 max)
SHORTSIZ16 e1432_get_max_order(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *max)

DESCRIPTION
e1432_set_max_ordersets the upper frequency limit of the resampled time data. This data is in the revolu-
tion domain. Themaxparameter is the upper limit expressed in units of a tachometer revolution (order) of
the resampled data from the order tracking measurement. The max order multiplied by the tach signal fre-
quency is the upper frequency limit of a signal to the inputs that can be reliably analysed by the order track-
ing algorithm. Resampled data calculation is activated by thee1432_set_calc_datafunction.

e1432_get_max_orderreturns the resampled time data upper limit into the variable pointed to bymax.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

maxspecifies the resampled time data upper frequency limit.

NOTE: When doing an order track measurement, the following relationship must hold between these
parameters:

max_order <= blocksize * delta_order / 5.12

or an ERR1432_ILLEGAL_BLOCK_ORDER_COMBO error will be issued when the measurement
starts.

RESET VALUE
After a reset,maxis set to 10.0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_max_order_limits, e1432_set_blocksize, e1432_set_calc_data, e1432_set_delta_order

E1432 183

E1432_SET_MEAS_TIME_LENGTH(3) E1432_SET_MEAS_TIME_LENGTH(3)

NAME
e1432_set_meas_time_length − Set measurement time length for time arming mode
e1432_get_meas_time_length − Get measurement time length for time arming mode

SYNOPSIS
SHORTSIZ16 e1432_set_meas_time_length(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 meas_time_length)
SHORTSIZ16 e1432_get_meas_time_length(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *meas_time_length)

DESCRIPTION
e1432_set_meas_time_lengthsets the length of time a measurement will run in the time arming mode. It is
a global parameter applying to all channels in a single module. Once started, a measurement will arm at
multiples of the time interval set by thee1432_set_meas_time_lengthfunction until the elapsed time
exceeds this measurement time length.

e1432_get_meas_time_lengthreturns the current value of the measurement time length into a memory loca-
tion pointed to bymeas_time_length.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of tach channels that was obtained with a call to
e1432_create_channel_group, or the ID of a single channel.

meas_time_lengthis the total measurement time length when the arm mode is set toE1432_ARM_TIME
by thee1432_set_arm_modefunction.

For input channels and source channels, this parameter is not used.

RESET VALUE
After a reset, themeas_time_lengthdefaults to 30.0 seconds.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_meas_time_length_limits, e1432_set_arm_time_interval

184 E1432

E1432_SET_MMF_DELAY(3) E1432_SET_MMF_DELAY(3)

NAME
e1432_set_mmf_delay − Set measurement mmf_delay
e1432_get_mmf_delay − Get current measurement mmf_delay

SYNOPSIS
SHORTSIZ16 e1432_set_mmf_delay(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 mmf_delay)
SHORTSIZ16 e1432_get_mmf_delay(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *mmf_delay)

DESCRIPTION
These functions are needed only for multi-mainframe measurements. For some multi-mainframe measure-
ments, synchronization between mainframes can be a problem. This problem can be worked around by
telling modules in the master mainframe to delay their measurement state transitions.

e1432_set_mmf_delaysets a measurement delay time, of a single channel or group of channelsID, to the
value given inmmf_delay.

e1432_get_mmf_delayreturns the current value of the measurement delay time, of a single channel or
group of channelsID, into a memory location pointed to bymmf_delay.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

mmf_delayspecifies the delay in 4 ms increments. This is the time that the module will delay releasing the
sync/trigger line, helping to ensure synchronization between modules in a multi-mainframe measurement.
A suggested value of 5 should be used for modules in the master mainframe. Larger values will provide
more assurance of synchronization, but will also slow down the measurement loop.

This parameter should be zero (which is the default) in all modules in the slave mainframes. It should be
non-zero only for modules in the master mainframe.

RESET VALUE
After a reset, the measurementmmf_delayis set to0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_multimain, e1432_arm_measure_master_finish

E1432 185

E1432_SET_MULTI_SYNC(3) E1432_SET_MULTI_SYNC(3)

NAME
e1432_set_multi_sync − Set multiple module system synchronization
e1432_get_multi_sync − Get current multiple module system sync state

SYNOPSIS
SHORTSIZ16 e1432_set_multi_sync(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 sync)
SHORTSIZ16 e1432_get_multi_sync(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *sync)

DESCRIPTION
A typical measurement doesn’t generally need to deal withe1432_set_multi_syncat all. Normally, the call
to e1432_init_measureautomatically takes care of setting the multi-module setups for all the modules in a
measurement, by internally callinge1432_set_multi_syncfor each module. This automatic setup can be
disabled using thee1432_set_auto_group_measfunction.

e1432_set_multi_syncsets the multiple module system synchronization, of a single channel or group of
channelsID, to the value given insync.

e1432_get_multi_syncreturns the current value of the multiple module system synchronization, of a single
channel or group of channelsID, into a memory location pointed to bysync.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

sync is used to select the synchronization. The E1432 supports synchronous operation among multiple
E1432s by using a VXI TTLTRG line to drive all the modules in a system from the same clock.
E1432_MULTI_SYNC_OFF sets the SYNC to be generated locally.E1432_MULTI_SYNC_ON sets
the module to use the SYNC line from the VXI backplane, which is selected withe1432_set_ttltrg_satrg.
This mode uses the SYNC line for multiple module synchronization capabilities including: booting of the
digital filters, synchronization of the local oscillators, arming, and triggering.

For backwards compatibility with the E1431 library, the following obsolete values forsync are also
accepted:E1432_SYSTEM_SYNC_OFF, which is the same asE1432_MULTI_SYNC_OFF; and
E1432_SYSTEM_SYNC_ON, which is the same asE1432_MULTI_SYNC_ON.

RESET VALUE
After a reset,syncis set toE1432_MULTI_SYNC_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_auto_group_meas, e1432_set_ttltrg_satrg

186 E1432

E1432_SET_OCTAVE_AVG_MODE(3) E1432_SET_OCTAVE_AVG_MODE(3)

NAME
e1432_set_octave_avg_mode − Set Octave measurement mode
e1432_get_octave_avg_mode − Get Octave measurement mode

SYNOPSIS
SHORTSIZ16 e1432_set_octave_avg_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 octave_avg_mode)
SHORTSIZ16 e1432_get_octave_avg_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *octave_avg_mode)

DESCRIPTION
e1432_set_octave_avg_modesets the octave average mode of the modules(s) selected to the value given in
octave_avg_mode.

e1432_get_octave_avg_modereturns the octave mode state of the modules(s) selected into a memory loca-
tion pointed to byoctave_avg_mode.

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
The ID parameter is used only to identify which module the function applies to, and all channels in that
module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to set/query.

octave_avg_modemust be one ofE1432_OCTAVE_AVG_MODE_EXP, which selects exponential aver-
aging, orE1432_OCTAVE_AVG_MODE_LIN , which selects linear (block) averaging.

Note: If octave_avg_mode is set to exponential, and the measurement arm mode is set to time arm or rpm
arm, the first trigger will start the measurement and all additional triggers will be ignored.

RESET VALUE
After a reset,octave_avg_modeis set toE1432_OCTAVE_AVG_MODE_EXP.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_hold_mode, e1432_set_octave_start_freq,
e1432_set_octave_stop_freq, e1432_set_octave_int_time, e1432_set_octave_time_const,
e1432_set_octave_time_step, e1432_octave_ctl, e1432_get_octave_blocksize, e1432_get_current_data

E1432 187

E1432_SET_OCTAVE_HOLD_MODE(3) E1432_SET_OCTAVE_HOLD_MODE(3)

NAME
e1432_set_octave_hold_mode − Set Octave hold mode
e1432_get_octave_hold_mode − Get Octave hold mode

SYNOPSIS
SHORTSIZ16 e1432_set_octave_hold_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 octave_hold_mode)
SHORTSIZ16 e1432_get_octave_hold_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *octave_hold_mode)

DESCRIPTION
e1432_set_octave_hold_modesets the octave hold mode of the modules(s) selected to the value given in
octave_hold_mode.

e1432_get_octave_hold_modereturns the octave hold mode state of the modules(s) selected into a memory
location pointed to byoctave_hold_mode.

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
The ID parameter is used only to identify which module the function applies to, and all channels in that
module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to set/query.

octave_hold_mode must be either E1432_OCTAVE_HOLD_MODE_OFF, or
E1432_OCTAVE_HOLD_MODE_MAX . E1432_OCTAVE_HOLD_MODE_OFF turns off Octave
hold mode.E1432_OCTAVE_HOLD_MODE_MAX selects the maximum value hold mode.

An octave hold mode of other thanE1432_OCTAVE_HOLD_MODE_OFF works only when the octave
av erage mode, selected bye1432_set_octave_avg_mode, is set toE1432_OCTAVE_AVG_MODE_EXP.
Otherwise, it is ignored.

The hold mode computations begin place after the settling time, as set bye1432_set_filter_settling_time.
Correct setting of filter_settling_time is essential for valid Octave hold mode results.

For implementation reasons, the Octave results returned bye1432_get_current_datamay be either the
instantaneous Octave data or hold mode data, depending on what is most recently available.

RESET VALUE
After a reset,octave_hold_modeis set toE1432_OCTAVE_HOLD_MODE_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_avg_mode, e1432_set_octave_start_freq,
e1432_set_octave_stop_freq, e1432_set_octave_int_time, e1432_set_octave_time_const,
e1432_set_octave_time_step, e1432_octave_ctl, e1432_get_octave_blocksize, e1432_get_current_data
e1432_set_filter_settling_time

188 E1432

E1432_SET_OCTAVE_INT_TIME(3) E1432_SET_OCTAVE_INT_TIME(3)

NAME
e1432_set_octave_int_time − Set Octave linear average integration time
e1432_get_octave_int_time − Get Octave linear average integration time

SYNOPSIS
SHORTSIZ16 e1432_set_octave_int_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 octave_int_time)
SHORTSIZ16 e1432_get_octave_int_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *octave_int_time)

DESCRIPTION
e1432_set_octave_int_timesets the average integration time of the modules(s) selected to the value given in
octave_int_time.

e1432_get_octave_int_timereturns the average integration time of the modules(s) selected into a memory
location pointed to byoctave_int_time.

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
The ID parameter is used only to identify which module the function applies to, and all channels in that
module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to set/query.

octave_int_timemust be within .001953125 seconds minimum and 10,000 seconds maximum. For values
below 1 second, it is rounded to the nearest negative power of two seconds. For values above 1 second, it is
rounded to the nearest second. This parameter sets the average time for an Octave linear average. For
exponential averages, this parameter has no effect.

Because of internal fifo issues, larger values ofoctave_int_timewill be rejected at the beginning of a mea-
surement with the ERR1432_ILLEGAL_OCTAVE_INT_TIME error if data other than
E1432_ENABLE_TYPE_OCTAVE, such as E1432_ENABLE_TYPE_TIME, is selected using the
e1432_set_enable function. These values depend on the amount of DRAM installed as well as the number
of channels enabled, but generally fall in the range of .5 to a small number of seconds. This problem can be
aleviated by adjustingoctave_time_stepto cause average updates to occur below this threshold. In general,
it is best to not select data other than E1432_ENABLE_TYPE_OCTAVE when using anoctave_time_step
of any significant size.

RESET VALUE
After a reset,octave_int_timeis set to 1.0 second.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_avg_mode, e1432_set_octave_hold_mode,
e1432_set_octave_start_freq, e1432_set_octave_stop_freq, e1432_set_octave_time_const,
e1432_set_octave_time_step, e1432_octave_ctl, e1432_get_octave_blocksize, e1432_get_current_data

E1432 189

E1432_SET_OCTAVE_MEAS(3) E1432_SET_OCTAVE_MEAS(3)

NAME
e1432_set_octave_meas − Set Octave measurement on/off state
e1432_get_octave_meas − Get Octave measurement on/off state

SYNOPSIS
SHORTSIZ16 e1432_set_octave_meas(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 octave_meas)
SHORTSIZ16 e1432_get_octave_meas(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *octave_meas)

DESCRIPTION
e1432_set_octave_measturns Octave measurements on/off for the modules(s) selected.

e1432_get_octave_measreturns the Octave measurment on/off state of the modules(s) selected into a mem-
ory location pointed to byoctave_meas.

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
The ID parameter is used only to identify which module the function applies to, and all channels in that
module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to set/query.

octave_measmust either E1432_OCTAVE_MEAS_OFF, to turn Octave measurements off, or
E1432_OCTAVE_MEAS_ON, to turn Octave measurements on.

Octave measurements can only be run onE1433 modules with the1D1 "Real Time Octave" option
installed. ErrorERR1432_OPTION_NOT_INSTALLED is returned when the measurement is started if
the 1D1 option is not installed if input channels are enabled. Error
ERR1432_OCTAVE_VS_MODULE_TYPE is returned when the measurement is started if the the mod-
ule is not anE1433module if input channels are enabled.

For Octave measurements to be run, the clock frequencey must be set to 65526 bye1432_set_clock_freq.

Octave measurements utilize a special SCA DSP downloadable,soct.bin , which must either be located
in /opt/e1432/lib/ (or \HPE1432\LIB\ on PC systems) if thehwinstall (1) program was used to
download the 96000 firmware or be in the same location as the 96000 firmware file if thee1432_install
function is used to install the 96000 firmware. Alternatively, thee1432_install_filefunction can be used to
inform the library of the location of the 96000 firmware file and hence the location of the Octave SCA DSP
downloadable. The standard SCA DSP downloadable is restored when measurements are begun after
selectingoctave_measof E1432_OCTAVE_MEAS_OFF.

Octave measurements with a trigger_delay, set bye1432_set_trigger_delay, other than 0 give indeterminate
results.

Time and Octave data are related by the trigger condition. A trigger begins a linear average or an exponen-
tial average, as set bye1432_set_octave_avg_meas. Since exponential averages run forever, only one trig-
ger is needed for an exponential average measurement.

Note: If octave_avg_mode is set to exponential, and the measurement arm mode is set to time arm or rpm
arm, the first trigger will start the measurement and all additional triggers will be ignored.

For linear averages, subsequent triggers are ignored until the time block size, as set bye1432_set_blocksize,

190 E1432

E1432_SET_OCTAVE_MEAS(3) E1432_SET_OCTAVE_MEAS(3)

(minus the overlap, as set bye1432_set_overlap) AND the integration time, as set by
e1432_set_octave_int_time, are fulfilled. So, if the Time block size (minus overlap) is greater than the inte-
gration time, there will be gaps between the Octave averages. If the Time block size (minus overlap) is less
than the integration time, then the overlap between Time blocks will be less than specified; there will be
gaps between the time blocks if the Time block size is less than the integration time.

For exponential averages and updates on linear averages, as set bye1432_set_octave_time_step, a time
block is chosen to fit the Octave update rate, so the Time blocks may be overlapped or have gaps between
them, regardless of what the overlap is set to. This is one case where more than one time block is available
for one trigger.

Peak and RMS values are placed in the trailer when Octave measurements are running and available via
e1432_get_current_valuecalls. The trailer Peak and RMS values are "filtered", the equivalent of
e1432_get_current_valueat for the frame of octave data that they are attached to. There is no equivalent of
E1432_PEAK_MODE_BLOCK or E1432_RMS_MODE_BLOCK.

The Octave SCA DSP downloadable is installed in the course of execution of this function. Since it tem-
porarily uses memory in the module which is also used for the arbitray source data, this function must pre-
ceed the function calls to pre-load the arbitrary source buffers usinge1432_write_srcbuffer_data.

RESET VALUE
After a reset,octave_measis set toE1432_OCTAVE_MEAS_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_avg_mode, e1432_set_octave_hold_mode,
e1432_set_octave_start_freq, e1432_set_octave_stop_freq, e1432_set_octave_int_time,
e1432_set_octave_time_const, e1432_set_octave_time_step, e1432_octave_ctl,
e1432_get_octave_blocksize, e1432_get_current_data, e1432_set_trigger_delay, e1432_install_file

E1432 191

E1432_SET_OCTAVE_MODE(3) E1432_SET_OCTAVE_MODE(3)

NAME
e1432_set_octave_mode − Set Octave measurement mode
e1432_get_octave_mode − Get Octave measurement mode

SYNOPSIS
SHORTSIZ16 e1432_set_octave_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 octave_mode)
SHORTSIZ16 e1432_get_octave_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *octave_mode)

DESCRIPTION
e1432_set_octave_modesets the octave mode of the modules(s) selected to the value given inoctave_mode.

e1432_get_octave_modereturns the octave mode state of the modules(s) selected into a memory location
pointed to byoctave_mode.

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
The ID parameter is used only to identify which module the function applies to, and all channels in that
module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to set/query.

octave_modemust be eitherE1432_OCTAVE_MODE_FULL or E1432_OCTAVE_MODE_THIRD .
E1432_OCTAVE_MODE_FULL selects full (1/1) Octave measurements.
E1432_OCTAVE_MODE_THIRD selects third (1/3) Octave measurements.

RESET VALUE
After a reset,octave_modeis set toE1432_OCTAVE_MODE_THIRD .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_meas, e1432_set_octave_avg_mode, e1432_set_octave_hold_mode,
e1432_set_octave_start_freq, e1432_set_octave_stop_freq, e1432_set_octave_int_time,
e1432_set_octave_time_const, e1432_set_octave_time_step, e1432_octave_ctl,
e1432_get_octave_blocksize, e1432_get_current_data, e1432_set_trigger_delay

192 E1432

E1432_SET_OCTAVE_START_FREQ(3) E1432_SET_OCTAVE_START_FREQ(3)

NAME
e1432_set_octave_start_freq − Set Octave start frequency band
e1432_get_octave_start_freq − Get Octave start frequency band
e1432_set_octave_stop_freq − Set Octave stop frequency band
e1432_get_octave_stop_freq − Get Octave stop frequency band

SYNOPSIS
SHORTSIZ16 e1432_set_octave_start_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 octave_start_freq)
SHORTSIZ16 e1432_get_octave_start_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *octave_start_freq)
SHORTSIZ16 e1432_set_octave_stop_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 octave_stop_freq)
SHORTSIZ16 e1432_get_octave_stop_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *octave_stop_freq)

DESCRIPTION
e1432_set_octave_start_freqand e1432_set_octave_stop_freqset the start frequency band and stop fre-
quency band, respectively, of the modules(s) selected to the value given inoctave_start_freqand
octave_stop_freq, respectively.

e1432_get_octave_start_freqande1432_get_octave_stop_freqreturn the start frequency band and stop fre-
quency band, respectively, of the modules(s) selected into a memory location pointed to by
octave_start_freqandoctave_stop_freq, respectively..

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
The ID parameter is used only to identify which module the function applies to, and all channels in that
module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to set/query.

octave_start_freqand octave_stop_freqare rounded to the nearest third octave band center, with a mini-
mum octave_start_freqof 3.15 Hz and a maximumoctave_stop_freqof 20.0 kHz. The maximum
octave_start_freqis 10.0 kHz oroctave_stop_freq, whichever is lesser. The minimumoctave_stop_freqis
6.3 Hz oroctave_start_freq, whichever is greater. When a Full Octave measurement is running, the start
and stop bands are the standard Full Octave bands containingoctave_start_freqand octave_stop_freq,
respectively.

Since octave_start_freqand octave_stop_freqchange the number of data points transferred by the
e1432_read_XXXXXXX_data functions, thee1432_get_octave_blocksizefunction has been provided to
supply the value need for thesizeparameter of the e1432_read_XXXXXXX_data functions.

RESET VALUE
After a reset,octave_start_freqis set to 3.15 Hz andoctave_stop_freqis set to 20.0 kHz.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_avg_mode, e1432_set_octave_hold_mode,
e1432_set_octave_int_time, e1432_set_octave_time_const, e1432_set_octave_time_step,
e1432_octave_ctl, e1432_get_octave_blocksize, e1432_set_filter_settling_time, e1432_get_current_data

E1432 193

E1432_SET_OCTAVE_TIME_CONST(3) E1432_SET_OCTAVE_TIME_CONST(3)

NAME
e1432_set_octave_time_const − Set Octave exponential average time constant
e1432_get_octave_time_const − Get Octave exponential average time constant

SYNOPSIS
SHORTSIZ16 e1432_set_octave_time_const(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 octave_time_const)
SHORTSIZ16 e1432_get_octave_time_const(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *octave_time_const)

DESCRIPTION
e1432_set_octave_time_constsets the exponential average time constant of the modules(s) selected to the
value given inoctave_time_const.

e1432_get_octave_time_constreturns the exponential average time constant value of the modules(s)
selected into a memory location pointed to byoctave_time_const.

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
The ID parameter is used only to identify which module the function applies to, and all channels in that
module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to set/query.

octave_time_constmust be within .0078125 seconds minimum and 1.0 seconds maximum. It is rounded to
the nearest negative power of two seconds. It is the time that it takes the the exponential Octave average
power to decay by a factor of "e".

RESET VALUE
After a reset,octave_time_constis set to .125 seconds.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_avg_mode, e1432_set_octave_hold_mode,
e1432_set_octave_start_freq, e1432_set_octave_stop_freq, e1432_set_octave_int_time,
e1432_set_octave_time_step, e1432_octave_ctl, e1432_get_octave_blocksize,
e1432_set_filter_settling_time, e1432_get_current_data

194 E1432

E1432_SET_OCTAVE_TIME_STEP(3) E1432_SET_OCTAVE_TIME_STEP(3)

NAME
e1432_set_octave_time_step − Set Octave time step
e1432_get_octave_time_step − Get Octave time step

SYNOPSIS
SHORTSIZ16 e1432_set_octave_time_step(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 octave_time_step)
SHORTSIZ16 e1432_get_octave_time_step(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *octave_time_step)

DESCRIPTION
e1432_set_octave_time_stepsets the octave time step of the modules(s) selected to the value given in
octave_time_step.

e1432_get_octave_time_stepreturns the octave time step of the modules(s) selected into a memory location
pointed to byoctave_time_step.

This parameter is a "global" parameter. It applies to an entire module rather than to one of its channels.
The ID parameter is used only to identify which module the function applies to, and all channels in that
module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to set/query.

octave_time_stepmust be within .001953125 seconds minimum and 10,000 seconds maximum. It is
rounded to the nearest negative power of two seconds.

octave_time_stepsets the average update rate for both linear and exponential averages. If it is larger than
the integration time, set by the e1432_set_octave_int_time function, for a linear average, only one upate
occurs, at the end of the average.

Because of internal fifo issues, larger values ofoctave_time_step(if less than octave_int_time when averag-
ing is linear) will be rejected at the beginning of a measurement with the
ERR1432_ILLEGAL_OCTAVE_TIME_STEP error if data other than
E1432_ENABLE_TYPE_OCTAVE, such as E1432_ENABLE_TYPE_TIME, is selected using the
e1432_set_enable function. These values depend on the amount of DRAM installed as well as the number
of channels enabled, but generally fall in the range of .5 to a small number of seconds. In general, it is best
to not select data other than E1432_ENABLE_TYPE_OCTAVE when using anoctave_time_stepof any
significant size.

RESET VALUE
After a reset,octave_time_stepis set to .125 seconds.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_octave_mode, e1432_set_octave_avg_mode, e1432_set_octave_hold_mode,
e1432_set_octave_start_freq, e1432_set_octave_stop_freq, e1432_set_octave_int_time,
e1432_set_octave_time_const, e1432_octave_ctl, e1432_get_octave_blocksize, e1432_get_current_data

E1432 195

E1432_SET_OVERLAP(3) E1432_SET_OVERLAP(3)

NAME
e1432_set_overlap − Set measurement overlap
e1432_get_overlap − Get current measurement overlap

SYNOPSIS
SHORTSIZ16 e1432_set_overlap(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 overlap)
SHORTSIZ16 e1432_get_overlap(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *overlap)

DESCRIPTION
e1432_set_overlapsets the measurement overlap, of a single channel or group of channelsID, to the value
given inoverlap.

e1432_get_overlapreturns the current value of the measurement overlap, of a single channel or group of
channelsID, into a memory location pointed to byoverlap.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

overlapselects the number of data points that can overlap between one block and the next. The value may
be positive or neg ative. A negative value for theoverlapmeans that there is a separation between succes-
sive blocks. When the data size is set toE1432_DAT A_SIZE_16, then the overlap will be rounded down
to an even number. When the in order tracking mode the number of point of overlap are specified in terms
of resampled time points.

When the data mode is set toE1432_BLOCK_MODE, then theoverlapis not used. This is like the block
mode of the E1431 and of the HP35652 and HP35655.

When the data mode is set toE1432_CONTINUOUS_MODE, then theoverlapspecifies the number of
samples that overlap between successive data blocks. The maximum legal value is one less than the block-
size, while the minimum legal value is some large negative number. A negative overlap corresponds to a
gap between one block and the next.

When the data mode is set toE1432_DAT A_MODE_OVERLAP_BLOCK , theoverlapspecifies the point
at which the module starts looking for a trigger for the next block of data. A positive value means that the
trigger can happen before the end of the previous block. A neg ative value causes a gap after the previous
block before a trigger can occur. Note that this just determines when the E1432 module reaches theTRIG-
GER state. Unlike in continuous mode, a trigger must still occur before a new data block is collected.

RESET VALUE
After a reset, theoverlapis set to0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_blocksize, e1432_set_data_mode, e1432_get_overlap_limits

196 E1432

E1432_SET_XXXX_XXXX_TIME(3) E1432_SET_XXXX_XXXX_TIME(3)

NAME
e1432_set_peak_decay_time − Set Peak detection decay time constant
e1432_get_peak_decay_time − Get current Peak detection decay time constant
e1432_set_rms_avg_time − Set RMS averaging decay time constant
e1432_get_rms_avg_time − Get current RMS averaging decay time constant
e1432_set_rms_decay_time − Set RMS decay time constant
e1432_get_rms_decay_time − Get current RMS decay time constant

SYNOPSIS
SHORTSIZ16 e1432_set_peak_decay_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 peak_decay_time)
SHORTSIZ16 e1432_get_peak_decay_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *peak_decay_time)
SHORTSIZ16 e1432_set_rms_avg_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 rms_avg_time)
SHORTSIZ16 e1432_get_rms_avg_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *rms_avg_time)
SHORTSIZ16 e1432_set_rms_decay_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 rms_decay_time)
SHORTSIZ16 e1432_get_rms_decay_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *rms_decay_time)

DESCRIPTION
e1432_set_peak_decay_timesets the exponential decay time constant, in seconds, for the Peak detection
current value for a module, the time for a Peak value to decay to 37%, in voltage equivalent. This decay is
only approximately exponential and breaks down under the conditions below.

e1432_set_rms_avg_timesets the exponential averaging time constant, in seconds, for the RMS current
value for a module, the time for the internal RMS average value to decay to 37%, in power equivalent. The
RMS power value is peak detected ande1432_set_rms_decay_timesets the exponential decay time con-
stant, in seconds, power equivalent, for this peak detection and the peak detected value becomes the value
returned bye1432_get_current_value. Both of these these decays are only approximately exponential and
break down under the conditions below.

The Peak and RMS values returned bye1432_get_current_valueare affected by these three parameters.
The Peak and/or RMS values in the data trailer are also affected by these parameters when Peak detection is
enabled using theE1432_PEAK_MODE_FILT parameter when calling thee1432_set_peak_modefunc-
tion and/or RMS computations are enabled using theE1432_RMS_MODE_FILT parameter when calling
thee1432_set_rms_modefunction. The Peak and/or RMS values in the data trailer are uniformly weighted
and not affected by these parameters when Peak detection is enabled using the
E1432_PEAK_MODE_BLOCK parameter and/or RMS computations are enabled using the
E1432_RMS_MODE_BLOCK parameter.

e1432_get_peak_decay_time, e1432_get_rms_avg_time, ande1432_get_rms_decay_timereturn the current
value of their parameters to a floating point variable pointed bypeak_decay_time, rms_avg_time, and
rms_decay_timerespectively.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel and is used to determine which module(s) the function call applies to.

peak_decay_timemay be any value betweenE1432_PEAK_DECAY_TIME_MIN (0) seconds and
E1432_PEAK_DECAY_TIME_MAX seconds inclusive.

E1432 197

E1432_SET_XXXX_XXXX_TIME(3) E1432_SET_XXXX_XXXX_TIME(3)

Likewise, rms_avg_timemay be any value betweenE1432_RMS_AVG_TIME_MIN (0) seconds and
E1432_RMS_AVG_TIME_MAX seconds inclusive.

rms_decay_timemay be any value betweenE1432_RMS_DECAY_TIME_MIN (0) seconds and
E1432_RMS_DECAY_TIME_MAX seconds inclusive. The RMS peak decay time should be set to
BE1432_RMS_DECAY_TIME_MIN (0) for the RMS current value to be a simple RMS exponential aver-
age, without peak detection.

With the correct choice ofrms_avg_timeandrms_decay_time, the "Slow", "Fast", and "Impulse" response
characteristics of ANSI S1.4-1983 can be approximated.

Whenpeak_decay_time, rms_avg_time, or rms_decay_timeapproach the neighborhood of 8-16 times the
decimated sample interval (1 divided by the value returned bye1432_get_span), the exponential peak decay
begins to break down and tends towards a uniform weighting. The length of the minimum, uniform weight-
ing is 16 decimated samples if both Peak detection and RMS computation are turned on with
e1432_set_peak_modeande1432_set_rms_mode. If only one of these are turned on, the length of the min-
imum, uniform weighting is 8 decimated samples. Then decimated sample rate is doubled by each of: set-
ting E1432_DECIMATION_OVERSAMPLE_ON with e1432_set_decimation_oversampleand setting
E1432_MULTIPASSwith e1432_set_decimation_output.

Peak detection and RMS computations are currently available only on the E1433.

If any of these parameter are changed while a measurement is running, the change will not have any effect
until the start of the next measurement.

RESET VALUE
After a reset,peak_decay_timeis set to 1.5 seconds.rms_avg_timeis set to 1.0 seconds and
rms_decay_timeto 0.0 seconds, approximating the "Slow" response characteristics of ANSI S1.4-1983.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_clock_freq, e1432_set_peak_mode, e1432_set_rms_mode, e1432_get_current_value.
e1432_set_weighting

198 E1432

E1432_SET_XXXX_MODE(3) E1432_SET_XXXX_MODE(3)

NAME
e1432_set_peak_mode − Set Peak detection on/off
e1432_get_peak_mode − Get current state of Peak detection operation
e1432_set_rms_mode − Set RMS computation on/off
e1432_get_rms_mode − Get current state of RMS computation operation

SYNOPSIS
SHORTSIZ16 e1432_set_peak_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 peak_mode)
SHORTSIZ16 e1432_get_peak_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *peak_mode)
SHORTSIZ16 e1432_set_rms_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 rms_mode)
SHORTSIZ16 e1432_get_rms_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *rms_mode)

DESCRIPTION
e1432_set_peak_modeand e1432_set_rms_modeturn on or off Peak detection and RMS computations,
respectively, for the modules(s) selected.

e1432_get_peak_modeand e1432_get_rms_modereturn the state of Peak detection and RMS computa-
tions, respectively, into a memory location pointed to bypeak_modeandrms_mode, respectively.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. It is used to determine which module(s) inhw to set/query.

peak_modemust be one ofE1432_PEAK_MODE_OFF to turn Peak detection off or either
E1432_PEAK_MODE_BLOCK or E1432_PEAK_MODE_FILT to turn Peak detection on. The param-
eter, E1432_RMS_MODE_ON is an alias forE1432_RMS_MODE_BLOCK and included for back-
wards compatibility.

rms_modemust be one ofE1432_RMS_MODE_OFF to turn RMS computations off or either
E1432_RMS_MODE_BLOCK or E1432_RMS_MODE_FILT to turn RMS computations on. The
parameter,E1432_RMS_MODE_ON is an alias forE1432_RMS_MODE_BLOCK and included for
backwards compatibility.

Peak detection and RMS computations are only available at clock frequencies of 65,536 or less. Peak
detection and RMS computations are performed at the full sample rate even when a lower span has been
chosen. Peak and RMS values are available through thee1432_get_current_valuefunction and in the
trailer. The choice betweenE1432_xxxx_MODE_BLOCK or E1432_xxxx_MODE_FILT determines the
computions used to place values in the trailer.

Because of conflicting demands on the module DSP resources, failures may occur for
E1432_PEAK_MODE_BLOCK or E1432_RMS_MODE_BLOCK spans greater than 5 kHz with order
tracking measurements, that is, bothdecimation_output = E1432_MULTIPASS and decima-
tion_oversample = E1432_DECIMATION_OVERSAMPLE_ON . Similarly,
E1432_PEAK_MODE_FILT E1432_RMS_MODE_FILT may fail for spans greater than 10 kHz with
order tracking measurements. If both Peak and RMS computations are turned on, the failures may occur at
lower spans.

Peak detection and RMS computations are currently available only on the E1433.

If either of these parameter are changed while a measurement is running, the change will not have any

E1432 199

E1432_SET_XXXX_MODE(3) E1432_SET_XXXX_MODE(3)

effect until the start of the next measurement.

RESET VALUE
After a reset, peak_mode is set to E1432_PEAK_MODE_OFF and rms_mode is set to
E1432_RMS_MODE_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_clock_freq, e1432_set_peak_decay_time, e1432_set_rms_avg_time,
e1432_set_rms_decay_time, e1432_get_current_value, e1432_set_weighting

200 E1432

E1432_SET_RAMP(3) E1432_SET_RAMP(3)

NAME
e1432_set_ramp − Set debug data ramp
e1432_get_ramp − Get current value of debug data ramp

SYNOPSIS
SHORTSIZ16 e1432_set_ramp(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 ramp)
SHORTSIZ16 e1432_get_ramp(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *ramp)

DESCRIPTION
e1432_set_rampsets the debug data ramp, for a single channel or group of channelsID, to the value given
in ramp.

e1432_get_rampreturns the current debug data ramp setting, of a single channel or group of channelsID,
into a memory location pointed to byramp.

This parameter is useful only for debugging, and may not even be useful for that. It’s main purpose is to
aid debugging of hardware and firmware problems at HP.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

rampdetermines whether the debug data ramp is turned on. The valid values are:

E1432_RAMP_OFF, to not have the ramp.

E1432_RAMP_ON, to turn on the ramp. When the ramp is on, all data from the input channels is thrown
aw ay, and replaced with artificial data which contains a smooth ramp. The ramp is duplicated for each
input channel and starts over with each block read from the module. When the data size is set to
E1432_DAT A_SIZE_16, then the ramp starts at a raw data value of zero and increments by one lsb for
each sample. When the data size is set toE1432_DAT A_SIZE_FLOAT32, then the ramp starts at floating-
point 1.0, and increments by a small value with each sample. When the data size is set to
E1432_DAT A_SIZE_32or E1432_DAT A_SIZE_32_SERV, the ramp starts at zero and increments by
65536 lsbs for each sample. The low 16 bits of the data is all zero, except that the very bottom bits are set
to the channel number.

When the ramp is on, it applies to all input time data transferred from the module, either to local bus or to
to host computer. If eav esdropping is enabled then the ramp applies only to the data transferred to the host,
and data going to disk may or may not have the ramp. We’re not telling.

When the ramp is on and frequency data is enabled, the ramp may or may not replace the time data that is
the input to the FFT. I think it will replace the time data if the host has enabled both time and frequency
data to the host, and it willnot if no time data is enabled to the host. Try it and let me know!

I hav e no idea what effect ramp will have when doing resampling. It probably will not be anything useful.

E1432 201

E1432_SET_RAMP(3) E1432_SET_RAMP(3)

RESET VALUE
After a reset,ramp is set toE1432_RAMP_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

202 E1432

E1432_SET_RAMP_RATE(3) E1432_SET_RAMP_RATE(3)

NAME
e1432_set_ramp_rate − Set source ramp rate of E1432 channels
e1432_get_ramp_rate − Get source ramp rate of E1432 channels

SYNOPSIS
SHORTSIZ16 e1432_set_ramp_rate(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 ramp_rate)
SHORTSIZ16 e1432_get_ramp_rate(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *ramp_rate)

DESCRIPTION
e1432_set_ramp_ratesets the source ramp-up and ramp-down rate, of a single channel or group of chan-
nelsID, to the value given inramp_rate.

e1432_get_ramp_ratereturns the current value of the source ramp rate, of a single channel or group of
channelsID, into a memory location pointed to byramp_rate.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

ramp_rateis the ramp-up rate. This is the total time for the ramp-up or ramp-down, in seconds.

For input channels, ramp rate is not generally used.

For source channels, the ramp rate is usually used to ensure that the source signal starts and stops smoothly.
Output signals will start at zero and then ramp up at the specified ramp_rate. Thus, the first output point
will be zero and succeeding values will follow the ramp_rate (which is applied at the clock_freq sampling
rate). NOTE: If the ramp_rate is set to zero, the first value output (at clock_freq rate) will still be zero.
This is especially noticeable at top span when using an Arb mode of operation since the first arb data point
will appear to have been over-written with zero.

For tach channels, ramp rate is not generally used.

RESET VALUE
After a reset, theramp_rateis set to 1 second.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_ramp_rate_limits

E1432 203

E1432_SET_RANGE(3) E1432_SET_RANGE(3)

NAME
e1432_set_range − Set range of E1432
e1432_get_range − Get current range of E1432

SYNOPSIS
SHORTSIZ16 e1432_set_range(E1432ID hw, SHORTSIZ16 ID, FLOATSIZ32 range)
SHORTSIZ16 e1432_get_range(E1432ID hw, SHORTSIZ16 ID, FLOATSIZ32 *range)

DESCRIPTION
e1432_set_rangesets the range, of a single channel or group of channelsID, to the value given inrange.

e1432_get_rangereturns the current value of the range, of a single channel or group of channelsID, into a
memory location pointed to byrange.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

rangeis the full scale range in volts. Signal inputs whose absolute value is larger than full scale will gener-
ate an ADC overflow error. (Actually, there is several dB of overhead before the ADC will overflow, to
avoid spurious overflow indications.)

The actual range that is set will be the nearest legal range value that is greater than or equal to the value
specified by therangeparameter.

For input channels, therange is used only when the input mode is Voltage or ICP (see
e1432_set_input_mode). When the input mode is Charge, therange_chargeparameter is used instead (see
e1432_set_range_charge). When the input mode is microphone mode, therange_mikeparameter is used
instead (seee1432_set_range_mike).

For source channels the range specifies an overall maximum signal level (typically on a range DAC
reserved for that purpose), and can’t be changed instantaneously during output. To change the signal
amplitude during output, use e1432_set_amp_scale, which can scale the output level by an (almost) arbi-
trary scale factor.

For tach channels, neither range nor amplitude are used.

This parameter may also be set withe1432_set_analog_input.

RESET VALUE
After a reset, input channels have therangeset to 10 volts. Source channels have therangeset to the mini-
mum legal source range (and the source is also inactive, so no signal is produced).

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_analog_input, e1432_set_amp_scale, e1432_set_input_mode, e1432_get_range_limits,
e1432_set_range_charge, e1432_set_range_mike, e1432_bob

204 E1432

E1432_SET_RANGE_CHARGE(3) E1432_SET_RANGE_CHARGE(3)

NAME
e1432_set_range_charge − Set charge-amp range of E1432
e1432_get_range_charge − Get current charge-amp range of E1432

SYNOPSIS
SHORTSIZ16 e1432_set_range_charge(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 range_charge)
SHORTSIZ16 e1432_get_range_charge(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *range_charge)

DESCRIPTION
e1432_set_range_chargesets the charge-amp range, of a single channel or group of channelsID, to the
value given inrange_charge.

e1432_get_range_chargereturns the current value of the charge-amp range, of a single channel or group of
channelsID, into a memory location pointed to byrange_charge.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

range_chargeis the full scale charge-amp range in picoCoulombs. Signal inputs whose absolute value is
larger than full scale will generate an ADC overflow error. (Actually, there is several dB of overhead before
the ADC will overflow, to avoid spurious overflow indications.)

The actual charge-amp range that is set will be the nearest legal range value that is greater than or equal to
the value specified by therange_chargeparameter.

The range_chargeparameter applies only to input channels, and is used only when the input mode is
E1432_INPUT_MODE_CHARGE (seee1432_set_input_mode). This is only possible when a Charge
Break-out Box is connected to the input.

RESET VALUE
After a reset, the charge-amp range is set to 50000 pC.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_input_mode, e1432_set_range, e1432_get_range_charge_limits, e1432_set_range_mike,
e1432_bob

E1432 205

E1432_SET_RANGE_MIKE(3) E1432_SET_RANGE_MIKE(3)

NAME
e1432_set_range_mike − Set microphone range of E1432
e1432_get_range_mike − Get current microphone range of E1432

SYNOPSIS
SHORTSIZ16 e1432_set_range_mike(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 range_mike)
SHORTSIZ16 e1432_get_range_mike(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *range_mike)

DESCRIPTION
e1432_set_range_mikesets the microphone range, of a single channel or group of channelsID, to the value
given inrange_mike.

e1432_get_range_mikereturns the current value of the microphone range, of a single channel or group of
channelsID, into a memory location pointed to byrange_mike.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

range_mikeis the full scale microphone range in volts. Signal inputs whose absolute value is larger than
full scale will generate an ADC overflow error. (Actually, there is several dB of overhead before the ADC
will overflow, to avoid spurious overflow indications.)

The actual microphone range that is set will be the nearest legal range_mike value that is greater than or
equal to the value specified by therange_mikeparameter.

The range_mikeparameter applies only to input channels, and is used only when the input mode is
E1432_INPUT_MODE_MIC or E1432_INPUT_MODE_MIC_200V (seee1432_set_input_mode). This
is only possible when a Microphone Break-out Box is connected to the input.

RESET VALUE
After a reset, the charge-amp range is set to 10 volts.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_input_mode, e1432_set_range, e1432_set_range_charge, e1432_get_range_mike_limits,
e1432_bob

206 E1432

E1432_SET_PRE_ARM_MODE(3) E1432_SET_PRE_ARM_MODE(3)

NAME
e1432_set_pre_arm_mode − Set pre-arm state
e1432_get_pre_arm_mode − Get current pre-arm state

SYNOPSIS
SHORTSIZ16 e1432_set_pre_arm_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 armState)
SHORTSIZ16 e1432_get_pre_arm_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *armState)

DESCRIPTION
e1432_set_pre_arm_modesets the pre-arm mode, of a single channel or group of channelsID, to the value
given inarmState.

e1432_get_pre_arm_modereturns the current value of the pre-arm mode, of a single channel or group of
channelsID, into a memory location pointed to byarmState.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

armStatedetermines which arm event will allow the module to advance from thePRE_ARM state into the
IDLE state.

E1432_MANUAL_ARM sets the module to wait for a pre-arm event to occur either from the system
(SYNC line), or from thee1432_pre_arm_measurecommand, in order to perform the transition.

E1432_AUTO_ARM sets the module to perform the transition as soon as it enters thePRE_ARM state.

There are three RPM pre-arming modes:

E1432_ARM_RPM_RUNUPsets the module to do a pre-arm as soon as the RPM from the tachometer
board rises above the level set by thee1432_set_pre_arm_rpmfunction.

E1432_ARM_RPM_RUNDOWN sets the module to do a pre-arm as soon as the RPM from the tach
board falls below the value set by thee1432_set_pre_arm_rpmfunction.

E1432_ARM_RPM_DELTA sets the module to do a pre-arm as soon as the RPM changes by the amount
set by thee1432_set_pre_arm_rpmfunctions.

There is also an external trigger pre-arm mode:

E1432_ARM_EXTERNAL specifies that the module should wait for an external trigger edge before mov-
ing on to theIDLE state.

If there is an option AYF tachometer board present, then the second channel on this board can be used as
the external trigger. Note that this channel must be active (set bye1432_set_active) and enabled to assert
trigger (by usinge1432_set_trigger_channelwith the E1432_CHANNEL_PRE_ARM parameter), in
order for it to detect an external trigger edge in the pre-arm state.

E1432 207

E1432_SET_PRE_ARM_MODE(3) E1432_SET_PRE_ARM_MODE(3)

If there is no option 1D4 source board present, then there is also an external trigger connector,ExTrig on
the module’s front panel which can be used for external triggering. This external trigger must be enabled
with e1432_set_trigger_extto allow it to detect an external trigger edge. (This external trigger input is a
TTL input, so there is no way to program the trigger level.)

RESET VALUE
After a reset,armStateis set toE1432_AUTO_ARM.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_pre_arm_measure, e1432_set_arm_mode, e1432_set_pre_arm_rpm, e1432_set_trigger_ext,
e1432_set_trigger_channel

208 E1432

E1432_SET_PRE_ARM_RPM(3) E1432_SET_PRE_ARM_RPM(3)

NAME
e1432_set_pre_arm_rpm − Set pre-arm threshold RPM
e1432_get_pre_arm_rpm − Get pre-arm threshold RPM

SYNOPSIS
SHORTSIZ16 e1432_set_pre_arm_rpm(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 rpm)
SHORTSIZ16 e1432_get_pre_arm_rpm(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *rpm)

DESCRIPTION
e1432_set_pre_arm_rpmsets the threshold value used by the RPM pre-arming modes of the
e1432_set_pre_arm_modefunction.

e1432_get_pre_arm_rpmreturns the threshold pre-arm RPM into the variable pointed to byrpm.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

rpmspecifies the threshold RPM.

RESET VALUE
After a reset,rpm is set to 0.0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_pre_arm_rpm_limits, e1432_set_pre_arm_mode

E1432 209

E1432_SET_RPM_HIGH(3) E1432_SET_RPM_HIGH(3)

NAME
e1432_set_rpm_high − Set upper limit of arming RPM
e1432_get_rpm_high − Get upper limit of arming RPM

SYNOPSIS
SHORTSIZ16 e1432_set_rpm_high(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 rpm)
SHORTSIZ16 e1432_get_rpm_high(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *rpm)

DESCRIPTION
e1432_set_rpm_highsets the upper limit of arming RPMs used by the RPM arming modes of the
e1432_set_arm_modefunction. The value entered is a floating point number, but it is truncated to a integer
internally; so the value returned bye1432_get_rpm_highwill always be an integer represented as a floating
point number.

e1432_get_rpm_highreturns the upper limit RPM into the variable pointed to byrpm.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

rpmspecifies the upper limit RPM.

NOTE: When in the order tracking measurement, the following relationship between these parameters
must be observed:

rpm_high <= 60 * span / max_order

or a WARN1432_LOST_RPM_TOO_HIGH warning will be issued and an arming point lost.

Arming begins at this threshold on a rundown measurment or ends at this threshold on a runup measure-
ment.

RESET VALUE
After a reset,rpm is set to 6000.0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_rpm_high_limits, e1432_set_arm_mode, e1432_set_rpm_low, e1432_set_rpm_interval

210 E1432

E1432_SET_RPM_INTERVAL(3) E1432_SET_RPM_INTERVAL(3)

NAME
e1432_set_rpm_interval − Set step interval of arming RPM
e1432_get_rpm_interval − Get step interval of arming RPM

SYNOPSIS
SHORTSIZ16 e1432_set_rpm_interval(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 rpm)
SHORTSIZ16 e1432_get_rpm_interval(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *rpm)

DESCRIPTION
e1432_set_rpm_intervalsets the stepping interval of arming RPMs used by the RPM arming modes of the
e1432_set_arm_modefunction. The value entered is a floating point number, but it is truncated to a integer
internally; so the value returned bye1432_get_rpm_intervalwill always be an integer represented as a
floating point number.

e1432_get_rpm_intervalreturns the stepping interval RPM into the variable pointed to byrpm.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

rpmspecifies the stepping interval RPM.

Arming reoccurs after the RPM changes by this stepping interval from the previous RPM arming point.

RESET VALUE
After a reset,rpm is set to 25.0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_rpm_interval_limits, e1432_set_arm_mode, e1432_set_rpm_low, e1432_set_rpm_high

E1432 211

E1432_SET_RPM_LOW(3) E1432_SET_RPM_LOW(3)

NAME
e1432_set_rpm_low − Set lower limit of arming RPM
e1432_get_rpm_low − Get lower limit of arming RPM

SYNOPSIS
SHORTSIZ16 e1432_set_rpm_low(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 rpm)
SHORTSIZ16 e1432_get_rpm_low(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *rpm)

DESCRIPTION
e1432_set_rpm_lowsets the lower limit of arming RPMs used by the RPM arming modes of the
e1432_set_arm_modefunction. The value entered is a floating point number, but it is truncated to a integer
internally; so the value returned bye1432_get_rpm_lowwill always be an integer represented as a floating
point number.

e1432_get_rpm_lowreturns the lower limit RPM into the variable pointed to byrpm.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

rpmspecifies the lower limit RPM.

NOTE: When in the order tracking measurement, the following relationship between these parameters
must be observed:

rpm_low >= (60 * span) / (64 * max_order)

or a WARN1432_LOST_RPM_TOO_LOW warning will be issued and an arming point lost.

Arming begins at this threshold on a runup measurment or ends at this threshold on a rundown measure-
ment.

RESET VALUE
After a reset,rpm is set to 600.0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_rpm_low_limits, e1432_set_arm_mode, e1432_set_rpm_high, e1432_set_rpm_interval

212 E1432

E1432_SET_RPM_SMOOTHING(3) E1432_SET_RPM_SMOOTHING(3)

NAME
e1432_set_rpm_smoothing − Set tach time smoothing factor
e1432_get_rpm_smoothing − Get tach time smoothing factor

SYNOPSIS
SHORTSIZ16 e1432_set_rpm_smoothing(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 smoothing)
SHORTSIZ16 e1432_get_rpm_smoothing(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *smoothing)

DESCRIPTION
e1432_set_rpm_smoothingsets the tach time smoothing factor used for calculating RPM values in the RPM
arming modes.

e1432_get_rpm_smoothingreturns the tach time smoothing factor into the variable pointed to bysmooth-
ing.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

smoothingspecifies the smoothing factor. It’s leg al values range from 0.0 to 1.0.

When the smoothing factor is non-zero, tach times are calculated using a weighted "average" of previous
smoothed tach times and the new raw tach time obtained from the AYF tachometer option. This smoothing
operation takes the "jitter" out of tach times obtained from real world tachometers. The smoothed tach time
is calculated in the following fashion:

Traw = current raw tach time from tach board
Tn-1 = previously calculated tach time
Tn-2 = calculated tach time before that
Tn = current tach time to be calculated

Tn = Traw * (1.0 - smoothing) + (2Tn-1 - Tn-2) * smoothing

RESET VALUE
After a reset,smoothingis set to 0.0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_rpm_smoothing_limits

E1432 213

E1432_SET_SAMPLE_MODE(3) E1432_SET_SAMPLE_MODE(3)

NAME
e1432_set_sample_mode − Set method of resampling time data in order tracking
e1432_get_sample_mode − Get method of resampling time data in order tracking

SYNOPSIS
SHORTSIZ16 e1432_set_sample_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode)
SHORTSIZ16 e1432_get_sample_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mode)

DESCRIPTION
e1432_set_sample_modesets the method of resampling time data while in order tracking to either the stan-
dard computed resampling or resampling at each tach pulse. The latter method is useful when using
tachometers/encoders with multiple pulses per revolution. This method resamples the time data at every
tach pulse as opposed to the normal resampling method which computes the resampling points based on the
delta order parameter and interpolated shaft positions.

The resample mode is a "global" parameter. It applies to an entire E1432/33 module (or group of modules
if in a master/slave configuration) rather than to one of its channels. TheID parameter is used only to iden-
tify which module the function applies to, and all channels in that module will report the same value for this
parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

modeselects the resample mode. The two modes areE1432_RESAMP_NORMAL for the normal mode
andE1432_RESAMP_AT_TACH for the resample at tach times mode.

Resampling of time data only make sense in the order tracking mode of the E1432, which means that the
e1432_set_calc_data function must be set to E1432_DAT A_RESAMP_TIME or
E1432_DAT A_ORDER. If it is set to E1432_DAT A_ORDER, the blocksize must be a power of two.
The number of pulses per revolution as specified by thee1432_set_tach_pprfunction is used to get the
number of sampling points per revolution in the resample at tach mode and the delta order parameter is
ignored. The value of smoothing set by thee1432_set_rpm_smoothingfunction is ignored when in the
resample at tach mode.

In the resample at tach mode, the number of pulses per revolution must be set by thee1432_set_tach_ppr
function. Theblocksizeparameter is set bye1432_set_blocksizeto a value equal to the number of pulses
per revolution times the number of revolutions of data wanted in a block. This number does not have to be
a power of twounlessthe internal FFT calculation is enabled with thee1432_set_calc_datafunction.

Except for a special external trigger case mentioned below, the resample at tach mode ignores all arming
and triggering modes. The module will continuously resample time data at the tach pulse times whenever
the RPM is within the high and low values set bye1432_set_rpm_highand e1432_set_rpm_lowrespec-
tively. If this causes the module to fall behind enough where new data coming into the data FIFO over-
writes old data, the module will skip over some of the older data and then continue resampling in order to
keep up. When it does this, it will issue a warning,WARN1432_LOST_DAT A_SHIFTED_OUT_FIFO.

There is a special configuration of the two tach channels such that one channel can be used to start the
resampling process, whose resample points come from the other channel. This is the external trigger option
which allows each occurance of the resample at tach process to be initiated by a "top dead center" signal
once per revolution, for instance. In this configuration, the first tach channel must be configured as the

214 E1432

E1432_SET_SAMPLE_MODE(3) E1432_SET_SAMPLE_MODE(3)

resampling channel and the second as the trigger channel. An example of the code to do this is found in the
demo programs by uncommenting theEXT_TRIG define statement.

The demo programs, at_tach.c and at_tach2.c, show how to set up the module to do resample at tach.

RESET VALUE
After a reset,modeis set toE1432_SAMP_RESAMP.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_calc_data, e1432_set_tach_ppr, e1432_get_meas_warning.

E1432 215

E1432_SET_SINE_FREQ(3) E1432_SET_SINE_FREQ(3)

NAME
e1432_set_sine_freq − Set source sine frequency of E1432 channels
e1432_get_sine_freq − Get source sine frequency of E1432 channels

SYNOPSIS
SHORTSIZ16 e1432_set_sine_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 sine_freq)
SHORTSIZ16 e1432_get_sine_freq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *sine_freq)

DESCRIPTION
e1432_set_sine_freqsets the source sine frequency, of a single channel or group of channelsID, to the
value given insine_freq. When the source is inE1432_SOURCE_MODE_SINEmode, this is the fre-
quency that is generated.

e1432_get_sine_freqreturns the current value of the source sine frequency, of a single channel or group of
channelsID, into a memory location pointed to bysine_freq.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

sine_freqis the sine frequency in Hertz.

For input channels, sine frequency is not used.

For source channels, the sine frequency is used when inE1432_SOURCE_MODE_SINEmode.

For tach channels, sine frequency is not used.

RESET VALUE
After a reset, thesine_freqis set to 1 kHz.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_source_mode, e1432_set_sine_phase, e1432_get_sine_freq_limits

216 E1432

E1432_SET_SINE_PHASE(3) E1432_SET_SINE_PHASE(3)

NAME
e1432_set_sine_phase − Set source sine start phase of E1432 channels
e1432_get_sine_phase − Get source sine start phase of E1432 channels

SYNOPSIS
SHORTSIZ16 e1432_set_sine_phase(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 sine_phase)
SHORTSIZ16 e1432_get_sine_phase(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *sine_phase)

DESCRIPTION
e1432_set_sine_phasesets the source sine start phase, of a single channel or group of channelsID, to the
value given insine_phase. When the source is in sinewave generation mode, this is the starting phase of
the sinewave that is generated.

e1432_get_sine_phasereturns the value of the source sine phase, of a single channel or group of channels
ID, into a memory location pointed to bysine_phase.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

sine_phaseis the starting sine phase in degrees. It must be between -360 and 360 degress. The sinusoid
signal is expressed as sin(sine_freq*t + sine_phase). If sine_phase is changed during a measurement, the
phase is incremented by the difference between sine_phase and the previous value of sine_phase. Note:
sine_phase cannot be changed during a measurement when using the burst sine mode
(E1432_SOURCE_MODE_BSINE) of operation.

For input channels, sine phase is not used.

For source channels, the sine phase is used when in sinewave mode.

For tach channels, sine phase is not used.

RESET VALUE
After a reset, thesine_phaseis set to zero.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_sine_freq, e1432_get_sine_phase_limits

E1432 217

E1432_SET_SOURCE_BLOCKSIZE(3) E1432_SET_SOURCE_BLOCKSIZE(3)

NAME
e1432_set_source_blocksize − Set source blocksize
e1432_get_source_blocksize − Get source blocksize

SYNOPSIS
SHORTSIZ16 e1432_set_source_blocksize(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 blocksize)
SHORTSIZ16 e1432_get_source_blocksize(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *blocksize)

DESCRIPTION
e1432_set_source_blocksizesets the source blocksize, of a single channel or group of channelsID, to the
number of samples given inblocksize. All channels with in a scource SCA have the same blocksize.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

blocksizeselects the number of sample points in a block. The default value is zero which means to use the
measurement blocksize.

RESET VALUE
After a reset, the sourceblocksizeis set to0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_blocksize, e1432_get_source_blocksize_limits

218 E1432

E1432_SET_SOURCE_CENTERFREQ(3) E1432_SET_SOURCE_CENTERFREQ(3)

NAME
e1432_set_source_centerfreq - Set source zoom center frequency
e1432_get_source_centerfreq - Get source zoom center frequency

SYNOPSIS
SHORTSIZ16 e1432_set_source_centerfreq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 freq)
SHORTSIZ16 e1432_get_source_centerfreq(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *freq)

DESCRIPTION
e1432_set_source_centerfreqsets the center frequency for source "zoom". See discussion of source zoom-
ing under thee1432_set_source_modefunction.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

freq is the source center frequency, in Hertz. The default value is zero which means to use the measurement
center frequency that was specified bye1432_set_center_freq. Any non-zero value overrides the center fre-
quency specified bye1432_set_center_freq, so that source channels may have a different center frequency
than input channels.

RESET VALUE
After a reset, the sourcefreq is set to0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_source_mode, e1432_get_source_centerfreq_limits, e1432_set_center_freq

E1432 219

E1432_SET_SOURCE_COLA(3) E1432_SET_SOURCE_COLA(3)

NAME
e1432_set_source_cola − Enable or disable source constant-level output
e1432_get_source_cola − Get current state of source constant-level output

SYNOPSIS
SHORTSIZ16 e1432_set_source_cola(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 source_cola)
SHORTSIZ16 e1432_get_source_cola(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *source_cola)

DESCRIPTION
e1432_set_source_colaenables or disables the source constant-level output, of a single channel or group of
channelsID, to the value given insource_cola.

e1432_get_source_colareturns the current status of the source constant-level output, of a single channel or
group of channelsID, into a memory location pointed to bysource_cola.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

source_cola specifies whether the constant-level output is enabled or not. The valid values are
E1432_SOURCE_COLA_OFF to disable the constant-level output,E1432_SOURCE_COLA_ON to
enable the constant-level output, andE1432_SOURCE_COLA_DRPEPPERfor a refreshing new taste in
colas.

Obviously, this function is not useful when talking to input or tach channels. Only source channels have a
constant-level output.

For the Option 1D4 single-channel source, the "source_cola" output is shared with the "source_sum" input.
Only one of these two may be enabled at any one time. For prototype Option 1D4 sources only, one of the
two must be enabled at all times, and the default is for the constant-level output to be enabled.

RESET VALUE
After a reset,cola is set toE1432_SOURCE_COLA_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_source_sum

220 E1432

E1432_SET_SOURCE_MODE(3) E1432_SET_SOURCE_MODE(3)

NAME
e1432_set_source_mode − Set source mode
e1432_get_source_mode − Get current state of source mode

SYNOPSIS
SHORTSIZ16 e1432_set_source_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode)
SHORTSIZ16 e1432_get_source_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mode)

DESCRIPTION
e1432_set_source_modesets the source mode, of a single channel or group of channelsID, to the value
given inmode.

e1432_get_source_modereturns the current value of the source mode, of a single channel or group of chan-
nelsID, into a memory location pointed to bymode.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

modedetermines the source mode. The valid values areE1432_SOURCE_MODE_SINEfor sine mode,
E1432_SOURCE_MODE_BSINEfor burst sine mode,E1432_SOURCE_MODE_RAND for random
noise,E1432_SOURCE_MODE_BRANDfor burst random noise,E1432_SOURCE_MODE_RANDZ
for zoomed random noise,E1432_SOURCE_MODE_BRANDZ for zoomed burst random noise, and
E1432_SOURCE_MODE_ARB for an arbitrary signal.E1432_SOURCE_MODE_BARB for a burst
arbitrary signal.

For E1432_SOURCE_MODE_RANDZ or E1432_SOURCE_MODE_BRANDZ the noise is digitally
mixed (multiplied) by a complex sine wav e. The frequency of the sine wav e is set by
e1432_set_source_centerfreqor e1432_set_center_freq. This results in a source signal with a spectrum
that is centered around the frequency set by this function with a span set bye1432_set_spanfunction or
e1432_set_source_span.

There are limitations on the spans available in the zoomed modes, since these modes require more than
twice as many digital filter operations to create. The top frequency is limited to one fifth of the normal top
frequency for the module; i.e. if the normal frequency is 20Khz, the top frequency in zoom is limited to
4KHz. The center frequency is constrained to be below this top frequency limit.

For E1432_SOURCE_MODE_ARBandE1432_SOURCE_MODE_BARB, the host program must pro-
vide the data to use for the arbitrary signal, by using thee1432_write_srcbuffer_datafunction. The arb
data must be reloaded into the buffers after setting which source channels are active.

For E1432_SOURCE_MODE_BARB, the source buffer mode must be set to
E1432_SRCBUFFER_PERIODIC_Aor E1432_SRCBUFFER_PERIODIC_AB.

For all of the burst modes, multiple source channels will burst at exactly the same time regardless of what
form of triggering is used by the system.

For non-burst modes, an auto-triggered measurement will start the source at the system sync, so that it is
already on by the time the inputs start taking data (though ramp-up may not yet be complete, depending on
the ramp rate set bye1432_set_ramp_rate). In contrast, a non-auto-triggered measurement will start the
source at the first trigger.

E1432 221

E1432_SET_SOURCE_MODE(3) E1432_SET_SOURCE_MODE(3)

For random signal modes,E1432_SOURCE_MODE_RAND, E1432_SOURCE_MODE_BRAND,
E1432_SOURCE_MODE_RANDZ, and E1432_SOURCE_MODE_BRANDZ, the nearly normal
amplitude distribution results in occassional high peak amplitudes. To avoid clipping, etc., the actual ran-
dom noise level is much less than the source level set usinge1432_set_amp_scaleande1432_set_range.

Typical source levels for non burst random signals whenamp_scaleset to 1 are:

source mode Vrms/Vrange Vpeak/Vrms

base-band random top span 0.22 3.2
base-band random other spans 0.2 4.4
zoomed random 0.11 4.4

Burst random signal levels will be similar, during the burst on time.

There is no "off" source mode. To turn a source channel off, make it inactive using e1432_set_active.

When the source is off, it is normally low impedance to ground. To make the source high impedance, use
thee1432_set_source_outputfunction, with theE1432_SOURCE_OUTPUT_OPENparameter.

There are currently some realtime restrictions that vary depending on the source mode used, whether
parameters are changed during a measurement, and which source outputs are being used. Currently the
conditions that will produce realtime source errors have been locked out by the following logic and will
produceERR1432_SRC_REALTIME_RESTRICTION errors if violated:

Lockouts for clock_freq:

Daughter board:
if ((ARB_CONT or ARB_PER_A or ARB_ONESHOT) and decimation) and

(clock_freq > 64000))

For SCA with 2 channels active:
if ((RANDZ or BRANDZ or ARB_CONT or ARB_PER_A or ARB_ONESHOT) and

(clock_freq > 51200))

Lockouts for changing parameters during a measurement:

Daughter Board:
if ((BSINE and clock_freq > 64000) or
((BRAND or RANDZ or BRANDZ or ARB (with decimation)) and
(clock_freq > 51200)))

SCA with 2 channels active:
if ((BSINE and clock_freq > 64000) or
((RAND(with decimation) or ARB) and clock_freq > 51200) or
((BRAND or RANSZ or BRANDZ) and (clock_freq > 50000)))

SCA with 1 channel active:
if ((BSINE or BRAND or BRANDZ) and (freq >64000))

Obviously, this function is not useful when talking to input or tach channels. Only source channels have a
source mode.

222 E1432

E1432_SET_SOURCE_MODE(3) E1432_SET_SOURCE_MODE(3)

RESET VALUE
After a reset,modeis set toE1432_SOURCE_MODE_SINE.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_amp_scale, e1432_set_range, e1432_set_input_mode, e1432_set_active,
e1432_set_source_output, e1432_set_source_span, e1432_set_source_centerfreq,
e1432_set_srcbuffer_mode

E1432 223

E1432_SET_SOURCE_OUTPUT(3) E1432_SET_SOURCE_OUTPUT(3)

NAME
e1432_set_source_output − Set source output type
e1432_get_source_output − Get current state of source output

SYNOPSIS
SHORTSIZ16 e1432_set_source_output(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 output)
SHORTSIZ16 e1432_get_source_output(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *output)

DESCRIPTION
e1432_set_source_outputsets the source output, of a single channel or group of channelsID, to the value
given inoutput.

e1432_get_source_outputreturns the current value of the source output, of a single channel or group of
channelsID, into a memory location pointed to byoutput.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

outputdetermines the source output. The valid values are:

E1432_SOURCE_OUTPUT_NORMAL for normal source output, as defined by the source mode and
other source parameters.

E1432_SOURCE_OUTPUT_GROUNDEDto have the source output connector remain grounded, while
internally connecting the source DAC to the CALOUT line in the module. Because the signal does not pass
through the range attenuator or analog filter circuits, the signal amplitude is controlled only by
e1432_set_amp_scale. Starting the source will leave the source output connector grounded, and drive the
source signal (as defined by the source mode) onto the CALOUT line.

E1432_SOURCE_OUTPUT_OPENto have the source remain open circuited even when the source is
started. The impedance on the output is actually only about 1K ohm, because the power-fail decay circuit
is still connected to the output.

E1432_SOURCE_OUTPUT_CAL to connect the source output connector to the module’s internal
CALOUT line. This allows the module’s CALOUT line to be driven by an external signal applied at the
source output connector.

E1432_SOURCE_OUTPUT_MULTI to connect the source output connector to the module’s internal
CALOUT line, and also connect the source DAC to the CALOUT line. This is a combination of the
GROUNDED and CAL values above, and is useful for multi-mainframe calibration.

Obviously, this function is not useful when talking to input or tach channels. Only source channels have a
source output.

RESET VALUE
After a reset,outputis set toE1432_SOURCE_OUTPUT_NORMAL.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

224 E1432

E1432_SET_SOURCE_OUTPUT(3) E1432_SET_SOURCE_OUTPUT(3)

SEE ALSO
e1432_set_source_mode, e1432_set_calin, e1432_set_active, e1432_set_amp_scale

E1432 225

E1432_SET_SOURCE_SEED(3) E1432_SET_SOURCE_SEED(3)

NAME
e1432_set_source_seed − Set seed for source random modes
e1432_get_source_seed − Get seed for source random modes

SYNOPSIS
SHORTSIZ16 e1432_set_source_seed(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 source_seed)
SHORTSIZ16 e1432_get_source_seed(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *source_seed)

DESCRIPTION
e1432_set_source_seedsets the seed used by the source random modes, of a single channel or group of
channels ID, to the value given insource_seed. This value is used when the source is in
E1432_SOURCE_MODE_RANDor E1432_SOURCE_MODE_BRANDmodes.

e1432_get_source_seedreturns the current value of the source randomization seed, of a single channel or
group of channelsID, into a memory location pointed to bysource_seed.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

source_seedis the seed value. Only the bottom eight bits of this seed value are currently used. However,
each of the 256 possible seeds results in uncorrelated signals (i.e. a source channel with a seed of 0 and a
source channel with a seed of 1 will produce random noise that is uncorrelated with each other).

For input channels, the source seed is not used.

For source channels, the source seed is used when inE1432_SOURCE_MODE_RAND or
E1432_SOURCE_MODE_BRANDmodes.

For tach channels, the source seed is not used.

Note: The reset value for this parameter is the same for all source channels. This means that unless the
application sets the source seeds, all source channels will produces the same random data. Furthermore,
unless the seed is changed between successive measurements, each source will produce the same data
stream from measurement to measurement.

RESET VALUE
After a reset, thesource_seedis set to 3.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_source_mode, e1432_get_source_seed_limits

226 E1432

E1432_SET_SOURCE_SPAN(3) E1432_SET_SOURCE_SPAN(3)

NAME
e1432_set_source_span − Set source span
e1432_get_source_span − Get source span

SYNOPSIS
SHORTSIZ16 e1432_set_source_span(E1432ID hw, SHORTSIZ16 ID, FLOATSIZ32 span)
SHORTSIZ16 e1432_get_source_span(E1432ID hw, SHORTSIZ16 ID, FLOATSIZ32 *span)

DESCRIPTION
e1432_set_source_spansets the source bandwidth. This specifies the maximum frequency at which the
output signal will correctly track the signal that the source is attempting to generate.

The valid values forspandepend of the current clock frequency, which is set bye1432_set_clock_freq.
The clock frequency should be set before setting the span. Normally, the maximum valid span is max_span
= clock_freq/2.56. Valid spans are max_span divided by powers of two, and max_span divided by five and
by powers of two. The ratio between the span and the max_span is called the decimation factor.

The maximum number of decimate-by-two passes allowed by the source is 16, so the maximum decimation
factor is 5*2ˆ16.

The effective sample rate, which is the rate at which data is received from an input or used by a source, is
normally equal to 2.56 times the span.

In certain cases, some of the frequencies above the maximum span may still contain valid alias-protected
data. However, this function ignores the extra bandwidth, and pretends that the maximum span is always
1/2.56 times the effective sample rate.

Filter settling is not performed on source channels during the measurement initialization process when the
decimation factor is greater than 5*2ˆ9.

e1432_get_source_spanreturns the current span in Hertz. All source channels in the same SCA have the
same span.

The default setting is 0 Hz. This is a special case, in which the source is actually set to the measurement
span.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

spanis the desired span, in Hz. It is rounded up to the next larger valid span.

This function is used in order to set a source channel to a different span than the input channels in a mea-
surement. However, even if the module is an E1434 and has no input channels, it is a good idea to also use
e1432_set_spanto tell the module what span other input modules are using. That way, if the source mod-
ule is doing source triggering, it knows how much decimation the inputs are doing and can ensure that the
source trigger lines up with the decimated input data.

RESET VALUE
After a reset, each source channel is set to a span of 0 Hz.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 227

E1432_SET_SOURCE_SPAN(3) E1432_SET_SOURCE_SPAN(3)

SEE ALSO
e1432_set_clock_freq, e1432_set_span, e1432_get_source_span_limits

228 E1432

E1432_SET_SOURCE_SUM(3) E1432_SET_SOURCE_SUM(3)

NAME
e1432_set_source_sum − Enable or disable source sum input
e1432_get_source_sum − Get current state of source sum input

SYNOPSIS
SHORTSIZ16 e1432_set_source_sum(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 source_sum)
SHORTSIZ16 e1432_get_source_sum(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *source_sum)

DESCRIPTION
e1432_set_source_sumenables or disables the source sum input, of a single channel or group of channels
ID, to the value given insource_sum.

e1432_get_source_sumreturns the current status of the source sum input, of a single channel or group of
channelsID, into a memory location pointed to bysource_sum.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

source_sum specifies whether the sum input is enabled or not. The valid values are
E1432_SOURCE_SUM_OFFto disable the sum input andE1432_SOURCE_SUM_ONto enable the
sum input. The signal on the sum input is internally added to the output that the source would otherwise be
produced.

Obviously, this function is not useful when talking to input or tach channels. Only source channels have a
constant-level output. This function only works on the Option 1D4 single-channel source.

For the Option 1D4 single-channel source, the "source_sum" input is shared with the "source_cola" output.
Only one of these two may be enabled at any one time. For prototype Option 1D4 sources only, one of the
two must be enabled at all times, and the default is for the constant-level output to be enabled and the sum
input to be disabled.

RESET VALUE
After a reset,sumis set toE1432_SOURCE_SUM_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_source_cola

E1432 229

E1432_SET_SPAN(3) E1432_SET_SPAN(3)

NAME
e1432_set_span − Set measurement span
e1432_get_span − Get measurement span

SYNOPSIS
SHORTSIZ16 e1432_set_span(E1432ID hw, SHORTSIZ16 ID, FLOATSIZ32 span)
SHORTSIZ16 e1432_get_span(E1432ID hw, SHORTSIZ16 ID, FLOATSIZ32 *span)

DESCRIPTION
e1432_set_spansets the measurement bandwidth. For an input channel, the span specifies the maximum
frequency at which valid alias-protected data will be received (frequencies above that are filtered out). For
a source channel, the span specifies the maximum frequency at which the output signal will correctly track
the signal that the source is attempting to generate.

The valid values forspandepend of the current clock frequency, which is set bye1432_set_clock_freq.
The clock frequency should be set before setting the span. Normally, the maximum valid span is max_span
= clock_freq/2.56. Valid spans are max_span divided by powers of two, and max_span divided by five and
by powers of two. The ratio between the span and the max_span is called the decimation factor.

NOTE: When in order tracking the max_span = clock_freq / 5.12, since the order tracking algorithm uses
data oversampled by two. Also in the order tracking mode, twice as much data is passed from the input
SCAs to the main processor. The outputs of all of the decimation filters in the input SCAs are output for the
order tracking algorithm to use. This increased data load forces a restriction on the number of channels that
can be used at the top order tracking spans ... only two SCA may be active on some of the top spans. In the
E1432 this means only 8 channels residing on two SCAs may be active at the top span (10Khz at clock fre-
quency of 51200). In the E1433 only 4 channels residing on two SCAs may be active above atspan of
10Khz. Any more active channels will cause the error,
ERR1432_ILLEGAL_ORDER_CHANNEL_COMBO .

For the E1432 51.2 kHz input SCA, the maximum number of decimate-by-two passes allowed is nine, so
the maximum decimation factor is 5*2ˆ9 and the minimum valid span is clock_freq/(2.56*5*2ˆ9). If the
clock frequency is larger than 51.2 kHz, then the E1432 input channel is unable to do a decimation factor of
one; the minimum decimation factor is 2 and the maximum valid span is clock_freq/5.12.

For the E1433 196 kHz input SCA, the maximum number of decimate-by-two passes allowed is 12, so the
maximum decimation factor is 5*2ˆ12. Due to limits in the E1433 DSP processors, when the clock fre-
quency is set higher than 128000 Hz, the E1432 input SCA is unable to doanydecimation, so in this case
the only valid span is clock_freq/2.56. Attempts to use decimation when the clock frequency is above
128000 Hz will result in an error when the measurement starts.

For the E1434 source, and the option 1D4 source board, the maximum number of decimate-by-two passes
allowed is 16, so the maximum decimation factor is 5*2ˆ16.

The effective sample rate, which is the rate at which data is received from an input or used by a source, is
normally equal to 2.56 times the span. If the data is oversampled (seee1432_set_decimation_oversample),
then the effective sample rate is 5.12 times the span.

In certain cases, some of the frequencies above the maximum span may still contain valid alias-protected
data. This will be the case if the digital filters in an SCA have a sharper cutoff than the usual 1/2.56. This
is the case with both the E1432 51.2 kHz input SCA and the E1433 196 kHz input SCA when at top span.
The E1432 and E1433 top span filter cutoff is clock_freq/2.226 (23 kHz when the clock frequency is 51.2
kHz, 88.3 kHz when the clock frequency is 196.608 kHz). However, this e1432_set_span function ignores
the extra bandwidth, and pretends that the maximum span is always 1/2.56 times the effective sample rate.

NOTE: There are further restrictions on allowable spans when in zoom mode. These are documented in
thee1432_set_zoomfunction.

230 E1432

E1432_SET_SPAN(3) E1432_SET_SPAN(3)

e1432_get_spanreturns the current span in Hertz. All channels of a module have the same span.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

spanis the desired span, in Hz. It is rounded up to the next larger valid span.

The algorithm to pick what "valid" span to round to is different depending on whether a measurement is
currently running or not. If no measurement is running, the span is chosen from all valid spans.

If a measurement is running, the span is required to use the same "divide by five" setting that the original
span used when the measurement was started. For example, if the clock frequency is 51200 Hz, it is valid
to switch from 5000 Hz to 10000 Hz spans when a measurement is running, but it is not valid to switch
from 4000 Hz to 10000 Hz. The 4000 Hz span uses divide by five, while the 10000 Hz span does not.

Because the algorithm for rounding the span depends on whether a measurement is running, and is some-
what complicated anyway, it is generally a good idea to calle1432_get_spanafter setting the span. This
will ensure that the host application knows the actual span that the module is using.

If the span is changed while a measurement is running, the module will flush any data from before the span
change. All data read from the module after the span change will be data at the new span. When using
trailer data (seee1432_set_append_status), the "gap" field in the trailer will not be exactly correct for the
first block after the span change.

RESET VALUE
After a reset, each module is set to the maximum legal span.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_clock_freq, e1432_get_span_limits, e1432_set_center_freq

E1432 231

E1432_SRCBUFFER_INIT(3) E1432_SRCBUFFER_INIT(3)

NAME
e1432_set_srcbuffer_mode − Set the source ARB buffer mode
e1432_get_srcbuffer_mode − Get the current source ARB buffer mode
e1432_set_srcbuffer_size − Set the source ARB buffer size
e1432_get_srcbuffer_size − Get the current source ARB buffer size
e1432_set_srcbuffer_init − Initialize the source ARB buffers
e1432_get_srcbuffer_init − Get the source ARB buffer initialization value

SYNOPSIS
SHORTSIZ16 e1432_set_srcbuffer_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode)
SHORTSIZ16 e1432_get_srcbuffer_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mode)
SHORTSIZ16 e1432_set_srcbuffer_size(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 size)
SHORTSIZ16 e1432_get_srcbuffer_size(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *size)
SHORTSIZ16 e1432_set_srcbuffer_init(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 initmode)
SHORTSIZ16 e1432_get_srcbuffer_init(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *initmode)

DESCRIPTION
These functions specify how the option 1D4 single-channel source will work, when the source is in mode
E1432_SOURCE_MODE_ARBand modeE1432_SOURCE_MODE_BARB.

For all of these functions,hw must be the result of a successful call toe1432_assign_channel_numbers, and
specifies the group of hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

e1432_set_srcbuffer_modesets the buffer operation mode for the source addressed. The values formode
are:

E1432_SRCBUFFER_PERIODIC_A specifies that the source will loop on one buffer of data (the A
buffer). The buffer size is determined bye1432_set_srcbuffer_size. This source buffer mode works for
both source modeE1432_SOURCE_MODE_ARBand source modeE1432_SOURCE_MODE_BARB.

E1432_SRCBUFFER_PERIODIC_ABspecifies that the source will loop on the both the A and B buffer
(concatenated). The total buffer size is twice that set bye1432_set_srcbuffer_size. This source buffer
mode works for both source modeE1432_SOURCE_MODE_ARB and source mode
E1432_SOURCE_MODE_BARB.

E1432_SRCBUFFER_CONTINUOUSspecifies that data will be continually loaded into the source from
the host and played back at a rate determined by the source frequency parameters. In the event that insuffi-
cient data is available, the source will replay its last data point and an source overread status condition will
be set. This mode uses both A and B buffers, alternately. Note: The at least one of the two source buffers
must be pre-loaded with data prior to starting a measurement. This source buffer mode works only for
source modeE1432_SOURCE_MODE_ARB, and not forE1432_SOURCE_MODE_BARB.

E1432_SRCBUFFER_ONESHOTspecifies that one buffer of data will be sent out, and then the source
will stop. When the source stops, it goes back to zero volts output. The buffer size is determined by
e1432_set_srcbuffer_size. Only the A buffer is used in this mode, and this buffer should be pre-loaded
before starting a measurement. This source buffer mode works only for source mode
E1432_SOURCE_MODE_ARB, and not forE1432_SOURCE_MODE_BARB.

232 E1432

E1432_SRCBUFFER_INIT(3) E1432_SRCBUFFER_INIT(3)

e1432_set_srcbuffer_sizesets the source buffer size in the source itself. The source contains two buffers
which are each set tosizewords.

e1432_set_srcbuffer_initinitializes the source buffers as well as the substrate buffers. Two initialization
options are specified by the values ofinitmode:

E1432_SRCBUFFER_INIT_EMPTY resets all buffers, substrate and source board, to empty.

E1432_SRCBUFFER_INIT_XFERresets all transfer buffers (substrate) only.

It is important to note that ae1432_set_srcbuffer_initcall is necessary in order for new values ofmodeand
sizeto take effect.

SOURCE DRAM USAGE
If an E1434 has DRAM installed, then the DRAM can be used to allow a larger-than-normal source buffer.
This works only when the source buffer is inE1432_SRCBUFFER_ONESHOT of
E1432_SRCBUFFER_PERIODIC_Amodes, and allows for a large buffer of data to be loaded and then
sent out the source. For E1432 or E1433 modules that have an option 1D4 source board installed, DRAM
may also be used for a large source buffer, but only if there areno active input channels in the module.

The DRAM is split evenly among the active source channels in the module. However, on an E1434, if
channel 2 is active but channel 1 is not active, then some of the DRAM is wasted on an unused buffer for
channel 1. Similarly, if channel 4 is active but channel 3 is not active, then some of the DRAM is wasted
on an unused buffer for channel 3. This means that the maximum source buffer size will be smaller than if
the DRAM were not wasted. To avoid this situation, always use channel 1 or channel 3 when you only
need one active source channel.

Each source sample takes up four bytes of DRAM. So, for example, if only source channel 1 is active and
the DRAM size is 32 MB, then the source buffer can hold 8388608 samples. At a sample rate of 65536 Hz,
this is 128 seconds of output signal.

A call to e1432_set_srcbuffer_sizeshould specify the desired source buffer size. There is no special func-
tion to turn on the use of DRAM. DRAM is used automatically if it is available and the specified source
buffer size is large enough to need it. Other than making a larger source buffer available to the host, the use
of DRAM is transparent to the host program.

When using DRAM as a large source buffer,e1432_write_srcbuffer_datais no longer restricted to a trans-
fer size ofE1432_SRC_DAT A_NUMWORDS_MAX. Instead, the transfer size can be as large as the
source buffer.

The use of DRAM for source buffer works only whene1432_set_source_modeis set to
E1432_SOURCE_MODE_ARB, and not when it is set toE1432_SOURCE_MODE_BARB.

RESET VALUES
After a reset,modeis set toE1432_SRCBUFFER_PERIODIC_A, andsizeis set to 1024.

RETURN VALUES
Each function returns 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_source_mode, e1432_write_srcbuffer_data, e1432_get_srcbuffer_size_limits

E1432 233

E1432_SET_SRCPARM_MODE(3) E1432_SET_SRCPARM_MODE(3)

NAME
e1432_set_srcparm_mode − Set source parameter mode
e1432_get_srcparm_mode − Get current state of source parameter mode
e1432_update_srcparm − Update source with current parameters

SYNOPSIS
SHORTSIZ16 e1432_set_srcparm_mode(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 mode)
SHORTSIZ16 e1432_get_srcparm_mode(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *mode)
SHORTSIZ16 e1432_update_srcparm(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 updatemode)

DESCRIPTION
e1432_set_srcparm_modesets the source parameter mode, of a single channel or group of channelsID, to
the value given inmode.

e1432_get_srcparm_modereturns the current value of the source parameter mode, of a single channel or
group of channelsID, into a memory location pointed to bymode.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

modedetermines the source parameter mode when the source is on. At the start of a measurement with an
active source, the source parameters are sent to the source independent of themodesetting. Themodeset-
ting is effective after the start of the measurement. The valid values are:

E1432_SRCPARM_MODE_IMMED for immediate update of any source parameter (default),

E1432_SRCPARM_MODE_DEFR all source parameter changes are deferred until a call to
e1432_update_srcparm.

The source parameters that can be set on the fly (and controlled bymode) are: amp_scale, range, freq, phase
(as appropriate for the source mode).

e1432_update_srcparmupdates the source with current parameters values using the method determined by
the value given inupdatemode, for a single channel or group of channelsID. It is to be called durring a
measurement, after source parameter values are changed, whenmode is
E1432_SRCPARM_MODE_DEFR.

update_modedetermines the method used in updating the source parameters.update_modeis ignored if
modeis E1432_SRCPARM_MODE_IMMED. For all source channels, valid values are:

E1432_SRCPARM_UPDATE_IMMED for parameters changed immediately, when
e1432_update_srcparmis called.

For sine or burst sine source channels, additional valid values are:

E1432_SRCPARM_UPDATE_IMMEDTRGOUT for parameters changed immediately and send a trig-
ger out (trigger out not sent when source is burst mode),

E1432_SRCPARM_UPDATE_XINGfor parameters changed at next zero crossing,

234 E1432

E1432_SET_SRCPARM_MODE(3) E1432_SET_SRCPARM_MODE(3)

E1432_SRCPARM_UPDATE_XINGTRGOUT for parameters changed at next zero crossing and send a
trigger out (trigger out not sent when source is burst mode),

E1432_SRCPARM_UPDATE_TRGIN for parameters changed at next trigger (not avaliable on the source
daughter board channel),

Obviously, these functions is are not useful when talking to input or tach channels. Only source channels
have a srcparm mode.

RESET VALUE
After a reset,modeis set toE1432_SRCPARM_MODE_IMMED.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 235

E1432_SET_SUMBUS(3) E1432_SET_SUMBUS(3)

NAME
e1432_set_sumbus − Set driver for the VXI SUMBUS line
e1432_get_sumbus − Get current value of VXI SUMBUS driver

SYNOPSIS
SHORTSIZ16 e1432_set_sumbus(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 sumbus)
SHORTSIZ16 e1432_get_sumbus(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *sumbus)

DESCRIPTION
e1432_set_sumbussets the driver for the VXI SUMBUS line, for a single channel or group of channelsID,
to the value given insumbus.

e1432_get_sumbusreturns the current setting of the VXI SUMBUS driver, of a single channel or group of
channelsID, into a memory location pointed to bysumbus.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

sumbusdetermines the driver for the SUMBUS line. This should be one of:

E1432_SUMBUS_OFF, to hav e nothing drive the line.

E1432_SUMBUS_CALOUT, to connect the internal CALOUT line to the SUMBUS. The CALOUT line
can be driven by the optional internal source board.

RESET VALUE
After a reset,sumbusis set toE1432_SUMBUS_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_calin, e1432_set_cal_voltage, e1432_set_source_output

236 E1432

E1432_SET_TACH_DECIMATE(3) E1432_SET_TACH_DECIMATE(3)

NAME
e1432_set_tach_decimate − Set tach decimation count
e1432_get_tach_decimate − Get tach decimation count

SYNOPSIS
SHORTSIZ16 e1432_set_tach_decimate(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 tach_decimate)
SHORTSIZ16 e1432_get_tach_decimate(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *tach_decimate)

DESCRIPTION
e1432_set_tach_decimatesets the tach decimation count, of a single channel or group of channelsID, to
the value given intach_decimate.

e1432_get_tach_decimatereturns the current value of the tach decimation count, of a single channel or
group of channelsID, into a memory location pointed to bytach_decimate.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

tach_decimateis the tach decimation count. This is the number of tach edges toskip between each tach
edge that is kept. A value of zero means to use every tach edge (and is the default).

For input channels and source channels, this parameter is not used.

RESET VALUE
After a reset, thetach_decimateis set to 0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_tach_decimate_limits

E1432 237

E1432_SET_TACH_HOLDOFF(3) E1432_SET_TACH_HOLDOFF(3)

NAME
e1432_set_tach_holdoff − Set tach holdoff time
e1432_get_tach_holdoff − Get tach holdoff time

SYNOPSIS
SHORTSIZ16 e1432_set_tach_holdoff(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 tach_holdoff)
SHORTSIZ16 e1432_get_tach_holdoff(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *tach_holdoff)

DESCRIPTION
e1432_set_tach_holdoffsets the tach holdoff time, of a single channel or group of channelsID, to the value
given intach_holdoff.

e1432_get_tach_holdoffreturns the current value of the tach holdoff time, of a single channel or group of
channelsID, into a memory location pointed to bytach_holdoff.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

tach_holdoffis the tach holdoff time, in seconds. This is the amount of time after a valid tach edge, before
the tach channel will start looking for another tach edge. A value of zero is silently adjusted to the mini-
mum holdoff time supported by the hardware.

For input channels and source channels, this parameter is not used.

RESET VALUE
After a reset, thetach_holdoffdefaults to the smallest non-zero value supported by the tach channel. For
the Option AYF tachometer board, this is approximately 10 microseconds.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_tach_holdoff_limits

238 E1432

E1432_SET_TACH_IRQ_NUMBER(3) E1432_SET_TACH_IRQ_NUMBER(3)

NAME
e1432_set_tach_irq_number − Set number of tachs per irq
e1432_get_tach_irq_number − Get number of tachs per irq

SYNOPSIS
SHORTSIZ16 e1432_set_tach_irq_number(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ16 number)
SHORTSIZ16 e1432_get_tach_irq_number(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ16 *number)

DESCRIPTION
e1432_set_tach_irq_numbersets the number of tachs present in the internal raw tach buffer before the
E1432_IRQ_TACHS_AVAIL bit is set in theE1432_IRQ_STATUS2_REGregister and, if enabled, a
tach available interrupt generated. This can be used in the host to regulate the frequency at which the
e1432_get_raw_tachsor e1432_send_tachsfunctions are called.

e1432_get_tach_irq_numberreturns the number of tachs per irq.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

numberselects the number of tachs in the raw tach buffer necessary to set the tach available bit.

RESET VALUE
After a reset,numberis set to64.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_send_tachs, e1432_get_raw_tachs

E1432 239

E1432_SET_TACH_MAX_TIME(3) E1432_SET_TACH_MAX_TIME(3)

NAME
e1432_set_tach_max_time − Set tach maximum time between pulses
e1432_get_tach_max_time − Get tach maximum time between pulses

SYNOPSIS
SHORTSIZ16 e1432_set_tach_max_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 tach_max_time)
SHORTSIZ16 e1432_get_tach_max_time(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *tach_max_time)

DESCRIPTION
e1432_set_tach_max_timesets the maximum time between tachometer pulses of a single channel or group
of channels,ID.

e1432_get_tach_max_timereturns the current value of the tach maximum time, of a single channel or
group of channelsID, into a memory location pointed to bytach_max_time.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of tach channels that was obtained with a call to
e1432_create_channel_group, or the ID of a single channel.

tach_max_timeis the maximum amount of time between valid tach edges before the rpm value of the tach
channel is set to zero, indicating that the tach may be disconnected.

For input channels and source channels, this parameter is not used.

RESET VALUE
After a reset, thetach_max_timedefaults to 30.0 seconds.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_tach_max_time_limits

240 E1432

E1432_SET_TACH_PPR(3) E1432_SET_TACH_PPR(3)

NAME
e1432_set_tach_ppr − Set tach pulses per revolution
e1432_get_tach_ppr − Get tach pulses per revolution

SYNOPSIS
SHORTSIZ16 e1432_set_tach_ppr(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 tach_ppr)
SHORTSIZ16 e1432_get_tach_ppr(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ32 *tach_ppr)

DESCRIPTION
e1432_set_tach_pprsets the number of tachometer pulses per revolution, of a single channel or group of
channelsID, to the value given intach_ppr.

e1432_get_tach_pprreturns the current value of the tach pulses per revolution, of a single channel or group
of channelsID, into a memory location pointed to bytach_ppr.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

tach_ppris the tach pulses per revolution.

For input channels and source channels, this parameter is not used.

Note: The E1432/3/4 tachometer inputs have a bandwidth of 100kHz, representing 8333 RPM at 720 PPR.
However, this 100kHz rate will not be usable in many circumstances.

The E1432/3/4 order-tracking algorithm for resampling time data has no theoretical limits on maximum
ppr. There are, however, practical limits as a result of available processing power; order-tracking is a very
computationally intensive algorithm. Settings of 0.5 to 4 fortach_pprseem optimal for most applications.
If the DUT is producing more than 4 PPR, it is possible to reduce the amount of tach processing required
with the aid of thee1432_set_tach_decimatefunction.

When the resample mode (as set bye1432_set_sample_mode) is set toE1432_RESAMP_AT_TACH, the
order tracking algorithm used is less computationally intensive. This should increase the practical limit on
tach_pprsomewhat.

The best way to determine what these practical limitations are is by experimentation. Factors that affect
this processing include ppr, channel count, module count, block size, sample rate, amount of DRAM avail-
able, and device RPM. System aspects which may have an affect include the host interface hardware, the
host, and programming environment.

RESET VALUE
After a reset, thetach_ppris set to 1.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_get_tach_ppr_limits, e1432_set_sample_mode, e1432_set_tach_decimate

E1432 241

E1432_SET_TRIGGER(3) E1432_SET_TRIGGER(3)

NAME
e1432_set_trigger − Set all trigger parameters except auto trigger

SYNOPSIS
SHORTSIZ16 e1432_set_trigger(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 chanState,
LONGSIZ32 delay, FLOATSIZ32 lowLevel,
FLOATSIZ32 highLevel, SHORTSIZ16 slope,
SHORTSIZ16 mode)

DESCRIPTION
e1432_set_triggersets all parameters associated with the trigger section of an E1432 or group of E1432s,
except the auto trigger mode (seee1432_set_auto_trigger).

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

chanStatedetermines if the channel or group of channels can digitally trigger a measurement.
E1432_CHANNEL_ON enables it to trigger a measurement and sets the channel active, if it is not already
in that state.E1432_CHANNEL_OFF disables it from triggering the measurement. This parameter may
also be set withe1432_set_trigger_channelin conjunction withe1432_set_active.

delay is the elapsed time, in number of samples, between the occurrence of a trigger and the beginning of
the data acquisition. A neg ative delay indicates a pre-trigger condition, where samples prior to the trigger
ev ent are included in the first measurement block. The maximum and minimum amounts of trigger delay
are determined by the amount of ram available and the number of active channels in the E1432 modules.
This parameter may also be set withe1432_set_trigger_delay.

lowLevelandhighLevelare the value of the two trigger levels. Their value ranges from roughly-125% to
+125%. These trigger levels may also be set withe1432_set_trigger_level. When mode is set to
E1432_TRIGGER_MODE_LEVEL , the difference between the two lev els controls the amount of noise
rejection, 10% is a good value to use here. For the AYF tachometer option the values are in volts and fall
between -25.0 and +25.0.

slope selects the edge of the trigger source (i.e. the direction) on which the trigger occurs.
E1432_TRIGGER_SLOPE_POSsets it to a positive crossing of the highLevel, or to an exit of the
bounded zone.E1432_TRIGGER_SLOPE_NEGsets it to a negative crossing of the lowLevel, or to an
entry into the bounded zone. This parameter may also be set withe1432_set_trigger_slope.

modeselects the operating mode of the trigger detection.E1432_TRIGGER_MODE_LEVEL selects the
positive or neg ative crossing of a unique trigger level.E1432_TRIGGER_MODE_BOUND selects the
exit from or entry to a zone bounded by the two trigger levels. This parameter may also be set with
e1432_set_trigger_mode.

RESET VALUE
After a reset,chanStateis set toE1432_CHANNEL_ON, delay is set to0, lowLevel is set to-10% for
input channels and-0.05volts for tach channels,highLevelis set to0% for input channels and0.0volts for
tach channels, slope is set to E1432_TRIGGER_SLOPE_POS, and mode is set to

242 E1432

E1432_SET_TRIGGER(3) E1432_SET_TRIGGER(3)

E1432_TRIGGER_MODE_LEVEL .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_auto_trigger, e1432_set_trigger_channel, e1432_set_trigger_delay, e1432_set_trigger_level,
e1432_set_trigger_mode, e1432_set_trigger_slope

E1432 243

E1432_SET_TRIGGER_CHANNEL(3) E1432_SET_TRIGGER_CHANNEL(3)

NAME
e1432_set_trigger_channel − Enable a channel to generate triggers
e1432_get_trigger_channel − Get current trigger setting

SYNOPSIS
SHORTSIZ16 e1432_set_trigger_channel(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 state)
SHORTSIZ16 e1432_get_trigger_channel(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *state)

DESCRIPTION
e1432_set_trigger_channelsets a single channel or group of channels,ID, to digitally trigger a measure-
ment, depending on the value given instate.

e1432_get_trigger_channelreturns the current value of the digital trigger source, of a single channel or
group of channelsID, into a memory location pointed to bystate.

This parameter may also be set withe1432_set_trigger.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

statedetermines if the channel or group of channels can digitally trigger a measurement.

E1432_CHANNEL_OFFdisables it from triggering the measurement.

E1432_CHANNEL_ON enables it to trigger a measurement, and also enables a trigger channel on an
Option AYF tachometer board to pre-arm the measurement if the pre-arm mode is
E1432_ARM_EXTERNAL .

E1432_CHANNEL_PRE_ARM enables the channel to pre-arm a measurement, but not trigger the mea-
surement, and is valid only for the trigger channel on an Option AYF tachometer board.

In addition to selecting a channel or group of channels as a source for triggering a measurement, it is possi-
ble to set up the following trigger parameters for each of the selected channels: the level may be set with
e1432_set_trigger_level, the slope may be set withe1432_set_trigger_slope, and the mode may be set with
e1432_set_trigger_mode.

A channel or group of channel which has been set to digitally trigger the measurement will implicitly do
that on a local (i.e. module) basis. If it is required that these local trigger conditions translate into system
wide (i.e. multiple modules) conditions, it is necessary to configure the module to act upon the system
sync/arm/trigger line (seee1432_set_multi_sync). This is normally handled automatically by
e1432_init_measure.

Input channels can be set to trigger the system when the input signal crosses a threshold, or when the input
signal exceeds programmed bounds. Source channels can be set to trigger the system at the start of a
"burst". Some tach channels can be set to trigger the system when the signal crosses a threshold.

For the Option AYF tachometer, only the second of the two tach channels can be set to trigger in the non-
RPM arming modes; the first tach channel is not capable of triggering. In the RPM arming modes, either
channel can be used for RPM arming/triggering. If the module’s pre-arm mode is set to
E1432_ARM_EXTERNAL , then the second of the two tach channels can be used to pre-arm the measure-
ment.

244 E1432

E1432_SET_TRIGGER_CHANNEL(3) E1432_SET_TRIGGER_CHANNEL(3)

RESET VALUE
After a reset,stateis set toE1432_CHANNEL_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_multi_sync, e1432_set_trigger, e1432_set_trigger_level, e1432_set_trigger_mode,
e1432_set_trigger_slope, e1432_set_pre_arm_mode.

E1432 245

E1432_SET_TRIGGER_DELAY(3) E1432_SET_TRIGGER_DELAY(3)

NAME
e1432_set_trigger_delay − Set trigger delay
e1432_get_trigger_delay − Get current trigger delay

SYNOPSIS
SHORTSIZ16 e1432_set_trigger_delay(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 delay)
SHORTSIZ16 e1432_get_trigger_delay(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *delay)

DESCRIPTION
e1432_set_trigger_delaysets the trigger delay, of a single channel or group of channelsID, to the value
given indelay.

e1432_get_trigger_delayreturns the current value of the delay, of a single channel or group of channelsID,
into a memory location pointed to bydelay.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

delay is the elapsed time, in number of samples, between the occurrence of a trigger and the beginning of
the data acquisition. A neg ative delay indicates a pre-trigger condition, where samples prior to the trigger
ev ent are included in the first measurement block. The minimum and maximum values for this parameter
vary depending on the amount of ram and the number of active channels in the E1432 modules. This
parameter may also be set withe1432_set_trigger.

NOTE: When order tracking is enabled with the e1432_set_calc_data, or when doing RPM arming (set by
e1432_set_arm_mode) there are only three valid trigger delay values:

0 trigger is at the beginning of the block of data
-blocksize/2 trigger is at the middle of the block of data
-blocksize trigger is at the end of the block of data

and any other values will be flagged as an illegal trigger delay value when the measurement is started.

NOTE: Use of a trigger delay other then 0 with Octave measurements (as set with
e1432_set_octave_mode) will have indeterminate results.

When the data size is set toE1432_DAT A_SIZE_16, then thedelaywill be rounded down to an even num-
ber.

RESET VALUE
After a reset,delayis set to0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_arm_mode, e1432_set_calc_data, e1432_set_trigger, e1432_get_trigger_delay_limits

246 E1432

E1432_SET_TRIGGER_EXT(3) E1432_SET_TRIGGER_EXT(3)

NAME
e1432_set_trigger_ext − Set external trigger mode
e1432_get_trigger_ext − Get current external trigger mode

SYNOPSIS
SHORTSIZ16 e1432_set_trigger_ext(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 ext)
SHORTSIZ16 e1432_get_trigger_ext(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *ext)

DESCRIPTION
Each E1432 has an external trigger input which can be used to pre-arm and/or trigger a measurement. This
trigger input is not part of any SCA, and is used only when there is no option 1D4 source board and no
option AYF tach/trigger board plugged into the rear connector of the E1432. This trigger input is a TTL
input, so the trigger level can’t be adjusted for this input.

e1432_set_trigger_extsets the external trigger mode for one or more E1432 modules.

e1432_get_trigger_extreturns the current external trigger mode, of a single channel or group of channels
ID, in the memory location pointed to byext.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

extspecifies the external trigger mode for the modules referred to byID. The valid choices are:

E1432_TRIGGER_EXT_OFF, which disables the external trigger;

E1432_TRIGGER_EXT_POS, which enables the external trigger and uses the positive edge of the trigger
to pre-arm or trigger a measurement;

E1432_TRIGGER_EXT_NEG, which enables the external trigger and uses the negative edge of the trig-
ger to pre-arm or trigger a measurement;

E1432_TRIGGER_EXT_PREARM_POS, which enables the external trigger for pre-arm, but not for
triggering, and uses the positive edge of the trigger to pre-arm the measurement;

E1432_TRIGGER_EXT_PREARM_NEG, which enables the external trigger for pre-arm, but not for
triggering, and uses the negative edge of the trigger to pre-arm the measurement.

The last two "prearm" values are useful only if the pre-arm mode is set toE1432_ARM_EXTERNAL , see
e1432_set_pre_arm_modefor details.

RESET VALUE
After a reset,ext is set toE1432_TRIGGER_EXT_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 247

E1432_SET_TRIGGER_EXT(3) E1432_SET_TRIGGER_EXT(3)

SEE ALSO
e1432_set_trigger_channel, e1432_set_trigger_slope, e1432_set_pre_arm_mode

248 E1432

E1432_SET_TRIGGER_LEVEL(3) E1432_SET_TRIGGER_LEVEL(3)

NAME
e1432_set_trigger_level − Set trigger level
e1432_get_trigger_level − Get current trigger level

SYNOPSIS
SHORTSIZ16 e1432_set_trigger_level(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 whichLevel,
FLOATSIZ32 level)

SHORTSIZ16 e1432_get_trigger_level(E1432ID hw, SHORTSIZ16 ID,
SHORTSIZ16 whichLevel,
FLOATSIZ32 *level)

DESCRIPTION
e1432_set_trigger_levelsets one of the two trigger levels, of a single channel or group of channelsID, to
the value given inlevel.

e1432_get_trigger_levelreturns one of the two current trigger levels, of a single channel or group of chan-
nelsID, into a memory location pointed to bylevel.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

whichLevelselects one of the two trigger levels.E1432_TRIGGER_LEVEL_LOWER sets the low lev el,
E1432_TRIGGER_LEVEL_UPPER sets the high level.

level is the value of the trigger level, expressed as a percentage of the current input range. Its value can be
from roughly-125% to +125%.

For a tach channel, there is no "full scale", so the trigger level is expressed as an absolute voltage. The
Option AYF tachometer board can set the trigger level between +-25 Volts.

For source channels, this function is not used, since it doesn’t make sense to specify a trigger level for a
source.

RESET VALUE
After a reset, the lower level is set to-10% for input channel and-0.05volts for tach channels. The higher
level is set to0% for input channels and0.0volts for tach channels.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_trigger_mode, e1432_set_trigger, e1432_get_trigger_level_limits

E1432 249

E1432_SET_TRIGGER_MASTER(3) E1432_SET_TRIGGER_MASTER(3)

NAME
e1432_set_trigger_master − Set trigger master state
e1432_get_trigger_master − Get current trigger master state

SYNOPSIS
SHORTSIZ16 e1432_set_trigger_master(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 state)
SHORTSIZ16 e1432_get_trigger_master(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *state)

DESCRIPTION
e1432_set_trigger_mastersets the trigger master state of a module when using one of the RPM arming
modes in a multiple module system. These RPM arming mode areE1432_ARM_RPM_RUNUP,
E1432_ARM_RPM_RUNDOWN, and E1432_ARM_RPM_DELTA, and are set by
e1432_set_arm_mode. This is used to allow the module with the AYF tachometer option to be the master
module. This module then sends each trigger point to the host computer, which relays it to all slave mod-
ules using thee1432_send_triggerfunction.

e1432_get_trigger_masterreturns the current trigger master state of a module.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

state enables/disables the ability of the module to be a master. The legal values are
E1432_TRIGGER_MASTER_ON and E1432_TRIGGER_MASTER_OFF. At each trigger point on
the master module while it is in one of the RPM arming modes, an index of the trigger point in the data
FIFO is stored for transmission to the host and theE1432_IRQ_TRIGGER bit in the
E1432_IRQ_STATUS2_REG register is set. This bit can be polled or interrupted upon using
e1432_set_interrupt_mask. When this bit is set, it is up to the host program to call thee1432_send_trigger
function, which will read the trigger index from the master module and send it to all of the slave modules.
Since the data FIFOs on all modules operate synchronously, this FIFO index will be the exact trigger point
in the slave modules as well. This triggering scheme only works when the data mode has been set by the
e1432_set_data_modefunction to beE1432_DAT A_MODE_OVERLAP_BLOCK , so that multiple trig-
gers can be stored.

If ID is a groupID and thestateis E1432_TRIGGER_MASTER_ON the first module associated with the
group is picked. IfID is a channel ID then the module with that channel is picked.

RESET VALUE
After a reset,stateis set toE1432_TRIGGER_MASTER_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_send_trigger, e1432_set_arm_mode, e1432_set_data_mode

250 E1432

E1432_SET_TRIGGER_MODE(3) E1432_SET_TRIGGER_MODE(3)

NAME
e1432_set_trigger_mode − Set trigger mode (either level or bound)
e1432_get_trigger_mode − Get current trigger mode

SYNOPSIS
SHORTSIZ16 e1432_set_trigger_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 mode)
SHORTSIZ16 e1432_get_trigger_mode(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *mode)

DESCRIPTION
e1432_set_trigger_modesets the trigger mode, of a single channel or group of channelsID, to the value
given inmode.

e1432_get_trigger_modereturns the current value of the mode, of a single channel or group of channelsID,
into a memory location pointed to bymode.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

modeselects the area covered by the trigger detection.E1432_TRIGGER_MODE_LEVEL selects the
positive or neg ative crossing of a unique trigger level.E1432_TRIGGER_MODE_BOUND selects the
exit from or entry to a zone bounded by two trigger levels. Seee1432_set_trigger_slope, for the direction
which is effective. If the trigger slope is positive, the zone is defined as either crossing the level upwards,
or exiting the zone. If the trigger slope is negative, the zone is defined as either crossing the level down-
wards, or entering the zone. This parameter may also be set withe1432_set_trigger.

For input channels, theE1432_TRIGGER_MODE_LEVEL and E1432_TRIGGER_MODE_BOUND
values are both valid. For tach channels, onlyE1432_TRIGGER_MODE_LEVEL makes sense, so the
others are not valid. For source channels, neither of these values makes any sense.

RESET VALUE
After a reset,modeis set toE1432_TRIGGER_MODE_LEVEL .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_trigger, e1432_set_trigger_slope

E1432 251

E1432_SET_TRIGGER_SLOPE(3) E1432_SET_TRIGGER_SLOPE(3)

NAME
e1432_set_trigger_slope − Set slope of trigger
e1432_get_trigger_slope − Get current slope of trigger

SYNOPSIS
SHORTSIZ16 e1432_set_trigger_slope(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 slope)
SHORTSIZ16 e1432_get_trigger_slope(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *slope)

DESCRIPTION
e1432_set_trigger_slopesets the trigger slope, of a single channel or group of channelsID, to the value
given inslope.

e1432_get_trigger_slopereturns the current value of the slope, of a single channel or group of channelsID,
into a memory location pointed to byslope.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

slope selects the edge of the trigger source (i.e. the direction) on which the trigger occurs.
E1432_TRIGGER_SLOPE_POS sets it to a positive going crossing of the level.
E1432_TRIGGER_SLOPE_NEGsets it to a negative going crossing of the level. This parameter may
also be set withe1432_set_trigger. If the trigger mode (seee1432_set_trigger_mode) is bound, positive is
synonymous of exiting the zone defined by the two trigger levels, and negative is synonymous of entering
it.

This function does not apply to source channels, since the concept of a trigger slope makes no sense for a
source channel.

RESET VALUE
After a reset,slopeis set toE1432_TRIGGER_SLOPE_POS.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_trigger, e1432_set_trigger_mode

252 E1432

E1432_SET_TRIGGERS_PER_ARM(3) E1432_SET_TRIGGERS_PER_ARM(3)

NAME
e1432_set_triggers_per_arm − Set number of triggers done for each arm
e1432_get_triggers_per_arm − Get number of triggers done for each arm

SYNOPSIS
SHORTSIZ16 e1432_set_triggers_per_arm(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 n)
SHORTSIZ16 e1432_get_triggers_per_arm(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *n)

DESCRIPTION
When a measurement is running, an arm must take place before the E1432 is ready to receive a trigger.
This function is used to set the number of triggers which are processed before the measurement loop looks
for another arm.

e1432_get_triggers_per_armreturns the current number of triggers processed per arm, of a single channel
or group of channelsID, in the memory location pointed to byn.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

n specifies the number of triggers processed per arm. If this value is negative, an error occurs. If this num-
ber is zero, then an infinite number of triggers will be processed. If this number is positive, then that many
triggers will be processed for each arm.

RESET VALUE
After a reset,n is set to 1.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_auto_trigger, e1432_set_arm_mode

E1432 253

E1432_SET_TRY_RECOVER(3) E1432_SET_TRY_RECOVER(3)

NAME
e1432_set_try_recover − Control signal trapping

SYNOPSIS
void e1432_set_try_recover(LONGSIZ32 state)

DESCRIPTION
e1432_set_try_recovercontrols the signal trapping functions of the E1432 library. Ifstateis non zero, bus
error signals are trapped by the library and dealt with, usually by terminating. Ifstateis zero, the library
does not trap the signal, which will allow user software to deal with the signal.

RESET VALUE
Default is 0, bus errors not trapped. This is different than the E1431 library, which defaults to trapping bus
errors.

RETURN VALUE
This function does not return a value.

254 E1432

E1432_SET_TTLTRG_CLOCK(3) E1432_SET_TTLTRG_CLOCK(3)

NAME
e1432_set_ttltrg_clock − Select a TTLTRG line for freerun clock
e1432_get_ttltrg_clock − Get current TTLTRG line for freerun clock

SYNOPSIS
SHORTSIZ16 e1432_set_ttltrg_clock(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 ttltrg)
SHORTSIZ16 e1432_get_ttltrg_clock(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *ttltrg)

DESCRIPTION
e1432_set_ttltrg_clocksets the VXI TTLTRG line used for the freerunning clock. If a measurement is in
progress while calling this function, the measurement is aborted. The freerunning clock can be shared by
several E1432 modules, to ensure that they sample data at the same time.

e1432_get_ttltrg_clockreturns the currently selected VXI TTLTRG line for the freerunning clock in the
memory location pointed to byttltrg.

An alternative way to specify TTLTRG line for the freerunning clock is to use thee1432_set_ttltrg_lines
function. That function restricts the choice of TTLTRG line to those compatible with the E1431 8-Channel
VXI Input.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

ttltrg selects a VXI ttltrg line to be used for the freerunning sample clock.

E1432_TTLTRG_0 selects TTLTRG0 for the clock.E1432_TTLTRG_1 selects TTLTRG1 for the clock.
E1432_TTLTRG_2 selects TTLTRG2 for the clock.E1432_TTLTRG_3 selects TTLTRG3 for the clock.
E1432_TTLTRG_4 selects TTLTRG4 for the clock.E1432_TTLTRG_5 selects TTLTRG5 for the clock.
E1432_TTLTRG_6 selects TTLTRG6 for the clock.E1432_TTLTRG_7 selects TTLTRG7 for the clock.

The mere selection of the TTLTRG line by this function does not necessarily cause the clock to get driven
onto that TTLTRG line. Normally, the clock is driven onto the TTLTRG line only when running a multi-
module measurement. This is taken care of automatically duringe1432_init_measure if
e1432_set_auto_group_measis on.

Whene1432_set_auto_group_measis off, the TTLTRG line is driven only if one of the following condi-
tions is met:

1. e1432_set_clock_masteris E1432_MASTER_CLOCK_ON.

2. e1432_set_multi_syncis E1432_SYSTEM_SYNC_ON.

3. e1432_set_clock_sourceis E1432_CLOCK_SOURCE_VXI or E1432_CLOCK_VXI_DEC_3.

E1432 255

E1432_SET_TTLTRG_CLOCK(3) E1432_SET_TTLTRG_CLOCK(3)

RESET VALUE
After a reset,ttltrg is set toE1432_TTLTRG_1.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_ttltrg_gclock, e1432_set_ttltrg_satrg, e1432_set_ttltrg_trigger, e1432_set_ttltrg_lines

256 E1432

E1432_SET_TTLTRG_GCLOCK(3) E1432_SET_TTLTRG_GCLOCK(3)

NAME
e1432_set_ttltrg_gclock − Select a TTLTRG line for gated clock
e1432_get_ttltrg_gclock − Get current TTLTRG line for gated clock

SYNOPSIS
SHORTSIZ16 e1432_set_ttltrg_gclock(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 ttltrg)
SHORTSIZ16 e1432_get_ttltrg_gclock(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *ttltrg)

DESCRIPTION
Gated clock lines are not normally used by the E1432 module, so this function is not normally used.

e1432_set_ttltrg_gclocksets the VXI TTLTRG line used for the gated clock. If a measurement is in
progress while calling this function, the measurement is aborted. The gated clock is normally turned on
only when data is actively being collected for a block of data that will be sent to the host. Other VXI
devices could use this clock and know that they are sampling data at the same time as the E1432.

e1432_get_ttltrg_gclockreturns the currently selected VXI TTLTRG line for the gated clock in the memory
location pointed to byttltrg.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

ttltrg selects a VXI ttltrg line to be used for the gated sample clock.

E1432_TTLTRG_0 selects TTLTRG0 for the clock.E1432_TTLTRG_1 selects TTLTRG1 for the clock.
E1432_TTLTRG_2 selects TTLTRG2 for the clock.E1432_TTLTRG_3 selects TTLTRG3 for the clock.
E1432_TTLTRG_4 selects TTLTRG4 for the clock.E1432_TTLTRG_5 selects TTLTRG5 for the clock.
E1432_TTLTRG_6 selects TTLTRG6 for the clock.E1432_TTLTRG_7 selects TTLTRG7 for the clock.

The mere selection of the TTLTRG line by this function does not necessarily cause the clock to get driven
onto that TTLTRG line. The TTLTRG line is driven only if one of the following conditions is met:

1. e1432_set_multi_syncis E1432_SYSTEM_SYNC_VXDor
E1432_SYSTEM_SYNC_VXD_MIN.

2. e1432_set_clock_sourceis E1432_CLOCK_SOURCE_VXI
or E1432_CLOCK_VXI_DEC_3.

RESET VALUE
After a reset,ttltrg is set toE1432_TTLTRG_1.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_ttltrg_clock, e1432_set_ttltrg_satrg, e1432_set_ttltrg_trigger, e1432_set_ttltrg_lines

E1432 257

E1432_SET_TTLTRG_LINES(3) E1432_SET_TTLTRG_LINES(3)

NAME
e1432_set_ttltrg_lines − Select a pair of sync/clock lines
e1432_get_ttltrg_lines − Get current selection of sync/clock lines

SYNOPSIS
SHORTSIZ16 e1432_set_ttltrg_lines(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 ttltrg)
SHORTSIZ16 e1432_get_ttltrg_lines(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *ttltrg)

DESCRIPTION
e1432_set_ttltrg_linessets the system VXI TTLTRG lines, of a single channel or group of channelsID, to
the value given inttltrg. If a measurement is in progress while calling this function, the measurement is
aborted.

e1432_get_ttltrg_linesreturns the currently selected VXI TTLTRG lines, of a single channel or group of
channelsID, into a memory location pointed to byttltrg.

An alternative way to specify TTLTRG lines is to use thee1432_set_ttltrg_clockande1432_set_ttltrg_satrg
functions. Those functions allow arbitrary choices for the TTLTRG lines. However,e1432_set_ttltrg_lines
ensures that the pair of lines chosen is compatible with the E1431 8-Channel VXI Input module.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

ttltrg selects a pair of VXI ttltrg lines to be used for the system lines. In the following list, the first line is
the one used for the Sync/Arm/Trigger line (i.e. controlling measurement loop transitions: booting, syn-
chronizing and settling, arming, triggering and measuring), and the second line is the one used for a free-
running system clock.

E1432_TTLTRG_01selects TTLTRG0 for SYNC, and TTLTRG1 for clock.E1432_TTLTRG_23selects
TTLTRG2 for SYNC, and TTLTRG3 for clock.E1432_TTLTRG_45 selects TTLTRG4 for SYNC, and
TTLTRG5 for clock. E1432_TTLTRG_67selects TTLTRG6 for SYNC, and TTLTRG7 for clock.

RESET VALUE
After a reset,ttltrg is set toE1432_TTLTRG_01.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_ttltrg_clock, e1432_set_ttltrg_gclock, e1432_set_ttltrg_satrg, e1432_set_ttltrg_trigger

258 E1432

E1432_SET_TTLTRG_SATRG(3) E1432_SET_TTLTRG_SATRG(3)

NAME
e1432_set_ttltrg_satrg − Select a TTLTRG line for sync/arm/trigger
e1432_get_ttltrg_satrg − Get current TTLTRG line for sync/arm/trigger

SYNOPSIS
SHORTSIZ16 e1432_set_ttltrg_satrg(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 ttltrg)
SHORTSIZ16 e1432_get_ttltrg_satrg(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *ttltrg)

DESCRIPTION
e1432_set_ttltrg_satrgsets the VXI TTLTRG line used for sync/arm/trigger between E1432 modules. If a
measurement is in progress while calling this function, the measurement is aborted. The sync/arm/trigger
can be shared by several E1432 modules, to ensure that they sync and trigger at the same time.

e1432_get_ttltrg_satrgreturns the currently selected VXI TTLTRG line for sync/arm/trigger in the memory
location pointed to byttltrg.

An alternative way to specify TTLTRG line for sync/arm/trigger is to use thee1432_set_ttltrg_linesfunc-
tion. That function restricts the choice of TTLTRG line to those compatible with the E1431 8-Channel VXI
Input.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

ttltrg selects a VXI ttltrg line to be used for sync/arm/trigger.

E1432_TTLTRG_0 selects TTLTRG0 for satrg.E1432_TTLTRG_1 selects TTLTRG1 for satrg.
E1432_TTLTRG_2 selects TTLTRG2 for satrg.E1432_TTLTRG_3 selects TTLTRG3 for satrg.
E1432_TTLTRG_4 selects TTLTRG4 for satrg.E1432_TTLTRG_5 selects TTLTRG5 for satrg.
E1432_TTLTRG_6selects TTLTRG6 for satrg.E1432_TTLTRG_7selects TTLTRG7 for satrg.

The mere selection of the TTLTRG line by this function does not necessarily cause the sync/arm/trigger to
get driven onto that TTLTRG line. Normally, the sync/arm/trigger is driven onto the TTLTRG line only
when running a multi-module measurement. This is taken care of automatically during
e1432_init_measureif e1432_set_auto_group_measis on.

Whene1432_set_auto_group_measis off, the TTLTRG line is driven only if one of the following condi-
tions is met:

1. e1432_set_clock_masteris E1432_MASTER_CLOCK_ON.

2. e1432_set_multi_syncis E1432_SYSTEM_SYNC_ON.

3. e1432_set_clock_sourceis E1432_CLOCK_SOURCE_VXI or E1432_CLOCK_VXI_DEC_3.

RESET VALUE
After a reset,ttltrg is set toE1432_TTLTRG_0.

E1432 259

E1432_SET_TTLTRG_SATRG(3) E1432_SET_TTLTRG_SATRG(3)

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_ttltrg_clock, e1432_set_ttltrg_gclock, e1432_set_ttltrg_trigger, e1432_set_ttltrg_lines

260 E1432

E1432_SET_TTLTRG_TRIGGER(3) E1432_SET_TTLTRG_TRIGGER(3)

NAME
e1432_set_ttltrg_trigger − Select a TTLTRG line for once-per-loop trigger
e1432_get_ttltrg_trigger − Get current TTLTRG line for once-per-loop trigger

SYNOPSIS
SHORTSIZ16 e1432_set_ttltrg_trigger(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 ttltrg)
SHORTSIZ16 e1432_get_ttltrg_trigger(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *ttltrg)

DESCRIPTION
The one-pulse-per-loop trigger is not normally used by the E1432 module, so this function is not normally
used.

e1432_set_ttltrg_triggersets the VXI TTLTRG line used for a one-pulse-per-loop trigger. If a measure-
ment is in progress while calling this function, the measurement is aborted. The one-pulse-per-loop trigger
is asserted at the start of each block of data acquired from an E1432. It is not asserted to synchronise the
modules at the start of a measurement, nor does it get asserted before the arm state as the sync/arm/trigger
line does. This line is therefore not compatible with the E1431 8-channel input module.

e1432_get_ttltrg_triggerreturns the currently selected VXI TTLTRG line for the one-pulse-per-loop trigger
in the memory location pointed to byttltrg.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

ttltrg selects a VXI ttltrg line to be used for the one-pulse-per-loop trigger.

E1432_TTLTRG_0 selects TTLTRG0 for the trigger.E1432_TTLTRG_1 selects TTLTRG1 for the trig-
ger. E1432_TTLTRG_2 selects TTLTRG2 for the trigger.E1432_TTLTRG_3 selects TTLTRG3 for the
trigger. E1432_TTLTRG_4 selects TTLTRG4 for the trigger.E1432_TTLTRG_5 selects TTLTRG5 for
the trigger. E1432_TTLTRG_6 selects TTLTRG6 for the trigger.E1432_TTLTRG_7 selects TTLTRG7
for the trigger.

The mere selection of the TTLTRG line by this function does not necessarily cause the trigger to get driven
onto that TTLTRG line. The TTLTRG line is driven only if one of the following conditions is met:

1. e1432_set_multi_syncis E1432_SYSTEM_SYNC_VXDor
E1432_SYSTEM_SYNC_VXD_MIN.

2. e1432_set_clock_sourceis E1432_CLOCK_SOURCE_VXI
or E1432_CLOCK_VXI_DEC_3.

RESET VALUE
After a reset,ttltrg is set toE1432_TTLTRG_0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 261

E1432_SET_TTLTRG_TRIGGER(3) E1432_SET_TTLTRG_TRIGGER(3)

SEE ALSO
e1432_set_ttltrg_clock, e1432_set_ttltrg_satrg, e1432_set_ttltrg_gclock, e1432_set_ttltrg_lines

262 E1432

E1432_SET_USER_DAT A(3) E1432_SET_USER_DAT A(3)

NAME
e1432_set_user_data − Set user data parameters.

SYNOPSIS
SHORTSIZ16 e1432_set_user_data(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 frame_length,
SHORTSIZ16 word_length,
SHORTSIZ16 sub_length,
SHORTSIZ16 sub_pos)

DESCRIPTION
e1432_set_user_datasets up the necessary parameters for handling user data from SCAs.
e1432_set_user_datais applicable only whene1432_sca_dsp_downloadhas been used to download alter-
native DSP programs to the SCAs which interleave user data bits/words with time data bits/words.

After a successful call toe1432_set_user_data, E1432_DAT A_USER1becomes a valid parameter for
e1432_set_calc_data, E1432_ENABLE_TYPE_USER1becomes a valid parameter fore1432_set_enable,
andE1432_USER1_DAT Abecomes a valid parameter fore1432_read_raw_data.

These parameter are "global" parameters. They apply to an entire E1432 module rather than to one of its
channels. TheID parameter is used only to identify which module the function applies to.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

frame_length specifies how many user data points constitute a "frame". Data returned by
e1432_read_raw_data is frame aligned. frame_length also becomes the block length for
E1432_USER1_DAT A. frame_lengthmust be greater than or equal to 1.

word_lengthis the length, in bits of a user data point.word_lengthmust be less than or equal to 32, the
length of the words returned bye1432_read_raw_data. A word_lengthof 0 turns off the user data mode.
Otherwise,word_lengthmust be greater than or equal to 2.word_lengthmust be 32 for interleaved 16 bit
time data, 16 bit user data.

sub_lengthis the number of bits in the lower bits of an SCA data word that are user data bits.sub_length
must be greater than or equal to 2 and less than or equal to 16.sub_lengthmust be 16 for interleaved 16 bit
time data, 16 bit user data.sub_lengthshould divide evenly intoword_lengthwith a quotient greater than
or equal to 1.

sub_posis the position of the user bits in the SCA data word. It should be 0 for interleaved 16 bit time
data, 16 bit user data. Forsub_lengthless than 16, it should be 8, to account for the status bits being placed
in the lower 8 bits of the SCA data word.

RESET VALUE
After a reset, the user data mode is not in effect (word_lengthis 0).

RETURN VALUE
Return 0 if successful,ERR1432_HARDWARE_INCAPABLE when the parameters cannot be accommo-
dated.

SEE ALSO
e1432_dsp_exec_query, e1432_sca_dsp_download

E1432 263

E1432_SET_USERWINDOW(3) E1432_SET_USERWINDOW(3)

NAME
e1432_set_user_window − Download arbitary FFT window type

SYNOPSIS
SHORTSIZ16 e1432_set_user_window(E1432ID hw, SHORTSIZ16 ID,

FLOATSIZ64 *buf, FLOATSIZ64 scale)

DESCRIPTION
e1432_set_user_windowdownloads an arbitrary FFT window type. This window is applied to input data as
part of the FFT. The FFT can be turned on usinge1432_set_calc_datawith theE1432_DAT A_FREQor
E1432_DAT A_ORDER parameter. Windowing is used to reduce leakage effects caused by input fre-
quency components that are not multiples of (effective_clock_freq)/(input blocksize).

e1432_set_user_windowalso sets the window type toE1432_WINDOW_USER1. Any call to
e1432_set_windowthat changes the window type away fromE1432_WINDOW_USER1will erase the
user window.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

buf is an array of sizeE1432_WINDOW_SIZE_MAX defining the arbitrary window. Note that this array
must be the full size even if the blocksize used is smaller thatE1432_WINDOW_SIZE_MAX .

scale is the scale factor for the user window, used to scale the FFTed data properly. The FFTed data is
internally multiplied by:

scale/ blocksize.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_calc_data, e1432_set_window.

264 E1432

E1432_SET_WINDOW(3) E1432_SET_WINDOW(3)

NAME
e1432_set_window − Set FFT window type
e1432_get_window − Get FFT window type

SYNOPSIS
SHORTSIZ16 e1432_set_window(E1432ID hw, SHORTSIZ16 ID, SHORTSIZ16 window)
SHORTSIZ16 e1432_get_window(E1432ID hw, SHORTSIZ16 ID, SHORTSIZ16 *window)

DESCRIPTION
e1432_set_windowsets the FFT window type. This window is applied to input data as part of the FFT.
The FFT can be turned on usinge1432_set_calc_datawith the E1432_DAT A_FREQ or
E1432_DAT A_ORDER parameter. Windowing is used to reduce leakage effects caused by input fre-
quency components that are not multiples of (effective_clock_freq)/(input blocksize).

e1432_get_windowreturns the current FFT window type.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

The window that is applied is already scaled for "narrow-band" measurements. For "wide-band" measure-
ments, the user must multiply the data by a factor that depends on which window is used (see below).

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

windowselects one of the following window types:

E1432_WINDOW_UNIFORM selects the Uniform window, which is equivalent to no windowing at all.

E1432_WINDOW_HANNING selects the Hann window, which is a simple raised cosine. This window
has good frequency resolution and reasonably good side-lobe roll-off, but poor main-lobe flatness and rela-
tively large side-lobe peaks. This window is often a good window to use when measuring broad-band
noise. The data will be scaled for narrow-band measurements; to convert to wide-band, multiply the data
by the square root of 2/3, which is approximately 0.81649658092772603.

E1432_WINDOW_FLATTOP selects a Flat-top window. This window is a good window to use when
making amplitude or phase measurements of relatively pure tones. The maximum side-lobe level is about
-95.1 dB, and the maximum main-lobe error is about plus-or-minus 0.00312487654556 dB. The data will
be scaled for narrow-band measurements; to convert to wide-band, multiply the data by
0.51150334640807393.

There is a setting ofE1432_WINDOW_USER1, but you shouldn’t set it using this function, use
e1432_set_user_windowfunction instead, which will load your own window and then will automatically
set the window type toE1432_WINDOW_USER1. Once you have loaded your USER window, changing
window type with this functione1432_set_windowwill erase your USER window.

RESET VALUE
After a reset,windowis set toE1432_WINDOW_UNIFORM .

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

E1432 265

E1432_SET_WINDOW(3) E1432_SET_WINDOW(3)

SEE ALSO
e1432_set_calc_data, e1432_set_user_window

266 E1432

E1432_SET_ZOOM(3) E1432_SET_ZOOM(3)

NAME
e1432_set_zoom - Set zoom state
e1432_get_zoom - Get zoom state

SYNOPSIS
SHORTSIZ16 e1432_set_zoom(E1432ID hw, SHORTSIZ16 ID, SHORTSIZ16 state)
SHORTSIZ16 e1432_get_zoom(E1432ID hw, SHORTSIZ16 ID, SHORTSIZ16 *state)

DESCRIPTION
e1432_set_zoomsets the zoom state, of a module. If zoom is on, the inputs are digitally mixed (i.e. multi-
plied by) by a complex sine wav e whose frequency is set bye1432_set_center_freq. This results in each
time sample becoming a real/imaginary pair, doubling the amount of time data. When a FFT is preformed
on this complex time data, the resulting spectrum is centered around the chosen center frequency. By
choosing a small span with thee1432_set_spanfunction, it is then possible to "zoom in" or increase FFT
resolution around a narrow band: center frequency +/- span/2.

There are span, sampling frequency, and center frequency limitations in the zoom mode due to the extra
processing required. These limitations are module dependent.

In the E1432 the max center frequency is limited to one fifth of the normal top span of the module for sam-
pling frequencies of 51.2KHz and lower; i.e.

max center frequency = sampling clock frequency / (2.56 * 5)

For sampling frequencies above 51.2KHz the front ends of the E1432 modules divide down the clock to the
ADC by a factor of two; so the max center frequency is also limited by an extra factor of two to prevent
aliasing:

max center frequency = sampling clock frequency / (2.56 * 10)

For the default sampling frequency of 51.2Khz, the max center frequency frequency in zoom is limited to
4KHz with any energy above this frequency attenuated by the decimation filters. There are only four spans
available in the zoomed mode instead of the eight available in the normal mode. The top span available io
one half the max center frequency. Spans are centered on the center frequency and progress lower by a fac-
tor of four rather than the normal factor of two. For the default sampling frequency of 51.2Khz the avail-
able zoomed spans are 2KHz, 500Hz, 125Hz, and 31.25Hz.

In the E1433 the max sampling frequency as set bye1432_set_clock_freqis limited to 65536 Hz. The max
center frequency is:

max center frequency = sampling clock frequency / 2.56

For the max sampling frequency of 65536 Hz, the max center frequency in zoom is thus limited to 25.6Khz
with any energy above this limit attenuated by the decimation filters. The max span is limited to one half of
the max center frequency, or 12.8KHz in the above case. There are 15 lower spans available, each a factor
of 2 lower than the previous higher one.

When a FFT is being done on the zoomed data, the measurement blocksize is restricted to a minimum of 32
and a maximum of 4096, and must be a power of two. Energy in frequencies above the max center fre-
quency is attenuated by the decimation filters. If the center frequency is lower than span/2, negative fre-
quency points are included in the FFT. These frequency point only duplicate information available in the
positive frequency range of a FFT. For these reasons it is customary to limit the center frequency to:

span/2 <= center frequency <= max center frequency - span/2 This limit will maximize
the non-redundant, unattenuated frequency points in the FFT.

E1432 267

E1432_SET_ZOOM(3) E1432_SET_ZOOM(3)

e1432_get_zoomreturns the current value of the state, of a single channel or group of channelsID, into a
memory location pointed to bystate.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

statecan be either E1432_ZOOM_ON or E1432_ZOOM_OFF

RESET VALUE
After a reset state is set to E1432_ZOOM_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_center_freq, e1432_set_span, e1432_set_clock_freq

268 E1432

E1432_SET_WEIGHTING(3) E1432_SET_WEIGHTING(3)

NAME
e1432_set_weighting − Set input weighting filter
e1432_get_weighting − Get current input weighting filter

SYNOPSIS
SHORTSIZ16 e1432_set_weighting(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 weighting)
SHORTSIZ16 e1432_get_weighting(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 *weighting)

DESCRIPTION
e1432_set_weightingsets the input weighting filter of a single channel or group of channelsID, to the value
given inweighting.

e1432_get_weightingreturns the current input weighting filter, of a single channel or group of channelsID,
into a memory location pointed to byweighting.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

weighting must be one of the following:E1432_WEIGHTING_OFF to turn the weighting filter off,
E1432_WEIGHTING_A for the A weighting filter,E1432_WEIGHTING_B for the B weighting filter,
E1432_WEIGHTING_C for the C weighting filter.

Weighting filter settings other thanE1432_WEIGHTING_OFF are only available at clock frequencies of
51200 and 65536 Hz.

Weighting filters are currently available only on the E1433. Yhey are applied by a time-domain filter, so
they affect both time and frequency domain data from the E1433 module.

The weighting filters are applied prior to Peak and RMS computations. Therefore, the values returned by
e1432_get_current_value, as well as the peak and rms value entries in the trailer (see
e1432_set_append_status) hav e the weighting applied.

If this parameter is changed while a measurement is running, it will not have any effect until the start of the
next measurement.

RESET VALUE
After a reset, theweightingis set toE1432_WEIGHTING_OFF.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_clock_freq, e1432_set_peak_mode, e1432_set_rms_mode, e1432_set_peak_decay_time,
e1432_set_rms_avg_time, e1432_set_rms_decay_time, e1432_get_current_value,
e1432_set_append_status.

E1432 269

E1432_SET_XFER_SIZE(3) E1432_SET_XFER_SIZE(3)

NAME
e1432_set_xfer_size − Set local bus transfer size
e1432_get_xfer_size − Get current local bus transfer size

SYNOPSIS
SHORTSIZ16 e1432_set_xfer_size(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 xfer_size)
SHORTSIZ16 e1432_get_xfer_size(E1432ID hw, SHORTSIZ16 ID,

LONGSIZ32 *xfer_size)

DESCRIPTION
e1432_set_xfer_sizesets the local bus transfer size, of a single channel or group of channelsID, to the
value given inxfer_size.

e1432_get_xfer_sizereturns the current value of the local bus transfer size, of a single channel or group of
channelsID, into a memory location pointed to byxfer_size.

When the data port is set to VME (seee1432_set_data_port), thenxfer_sizeis not used. When the data
port is set to local bus, or local bus eavesdrop, thisxfer_sizeis the number of data points in each block sent
to the local bus.

The default value forxfer_sizeis zero, which means to use the currentblocksizeinstead.

If zoom is on (seee1432_set_zoom), each point is complex. This means the number of values sent over the
local bus is twice thexfer_size, or twice theblocksizeif xfer_sizeis zero.

This parameter is a "global" parameter. It applies to an entire E1432 module rather than to one of its chan-
nels. TheID parameter is used only to identify which module the function applies to, and all channels in
that module will report the same value for this parameter.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel.

xfer_sizeselects the number of sample points in a block. The minimum legal value is 0 (which means to
use theblocksizeinstead); the maximum depends on how much RAM is available and how many channels
are active in a module. This parameter should not include the size of the appended status data, as defined in
e1432_set_append_status.

When the data size is set toE1432_DAT A_SIZE_16, thexfer_sizewill be rounded down to an even num-
ber (but a non-zeroxfer_sizeof less than four will get rounded up to four).

RESET VALUE
After a reset, the measurementxfer_sizeis set to 0.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_set_append_status, e1432_set_data_port, e1432_set_data_size, e1432_get_xfer_size_limits,
e1432_get_fifo_size_current_max, e1432_set_zoom

270 E1432

E1432_SRC_GET_REV(3) E1432_SRC_GET_REV(3)

NAME
e1432_src_get_rev − Get revision information for source board hardware

and rom
e1432_src_get_fwrev − Get revision information for file containing

source board rom binary

SYNOPSIS
SHORTSIZ16 e1432_src_get_rev(E1432ID hw,SHORTSIZ16 src_chan,

LONGSIZ32 *romid, LONGSIZ32 *romdate, LONGSIZ32 *bdid,
char *bddate)

SHORTSIZ16 e1432_src_get_fwrev(LONGSIZ32 *dptr, LONGSIZ32 *fwid,
LONGSIZ32 *fwdate, LONGSIZ32 numwords)

DESCRIPTION
e1432_src_get_revreturns revision information for source board hardware and rom, of a single channel
src_chan, into memory locations pointed to byromid,romdate,bdidandbddate.

e1432_src_get_fwrevreturns revision information for source board firmware file loaded into an array,
pointed to bydptr, of sizenumwords, into memory locations pointed to byfwid andfwdate.

romid (or fwid) is the revision id of firmware in the rom (or rom file) (one word).

romdate(or fwdate) is the revision date of firmware in the rom (or file), when displayed as hex (one word,
yyyymmdd).

bdid is the revision id of the source board hardware (one word).

bddateis the revision date of the source board hardware (12 ascii characters).

src_chanis the ID of a single channel.

dptr points to the location the binary rom file is stored in memory.

numwordsis the size of the file in 4 byte words.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_src_prog_romimage(3), srcutil(1)

E1432 271

E1432_SRC_PROG_ROMIMAGE(3) E1432_SRC_PROG_ROMIMAGE(3)

NAME
e1432_src_prog_romimage − Programs source board flash rom.

SYNOPSIS
SHORTSIZ16
e1432_src_prog_romimage(E1432ID hw,SHORTSIZ16 src_chan, LONGSIZ32 *dptr,

LONGSIZ32 numwords)

DESCRIPTION
e1432_src_prog_romimageprograms the flash rom associated with source channelsrc_chan, from binary
file loaded into array, pointed to bydptr, of sizenumwords.

src_chanis the ID of a single channel.

dptr points to the location the binary rom file is stored in memory.

numwordsis the size of the file in 4 byte words.

The binary file in the array is validated, the system area of the rom is erased, then it is programmed, 4096
words at a time. Prints to stdout describe what is going on.

CAUTION: Interrupting the erase and reprogramming of the source flash rom will create a currupt rom
which is useless. A recover service procedure is in arbsrc/romfix.txt.

The cal factors and hardware revision information are not affected by this process.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_src_get_fwrev(3), e1432_src_get_rev(3), srcutil(1)

272 E1432

E1432_SRC_RXFR(3) E1432_SRC_RXFR(3)

NAME
e1432_src_rxfr − Raw multiblock write to source

SYNOPSIS
SHORTSIZ16 e1432_src_rxfr(E1432ID hw, SHORTSIZ16 src_chan, LONGSIZ32 numwords,

LONGSIZ32 *dptr, LONGSIZ32 mode)

DESCRIPTION
e1432_src_rxfrcalls e1432_write_srcbuffer_data, with multiple transfer blocks if needed, to writenum-
wordsof dptr data to source, without any protocol wrapper.

src_chanis the ID of a single channel.

numwordsis the size of the file in 4 byte words.

dptr points to the location in memory of the data to be transferred.

modeis thee1432_write_srcbuffer_datawrite mode.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_write_srcbuffer_data(3)

E1432 273

E1432_TRACE_LEVEL(3) E1432_TRACE_LEVEL(3)

NAME
e1432_trace_level − Enable/disable call tracing printout

SYNOPSIS
void e1432_trace_level(SHORTSIZ16 level)

DESCRIPTION
Debugging is easier if you are able to trace the progression of calls made to and within the E1432 library.
e1432_trace_levelcauses several different levels of call tracing to be displayed.

Level 0 is no tracing

Level 1 displays first level calls, meaning the major E1432_XXX type calls. Some E1432_XXX functions
call other E1432_XXX functions. This becomes apparent once you start this type of debugging.

Level 2 and Level 3 display increasingly smaller functions and would probably not be of interest to most
users of this the E1432 library.

level is an integer whose value is either0 (no tracing), or a tracing level desired.1 will probably do for
most users.

RESET VALUE
After a reset,trace_levelis set to0, resulting in no call tracing.

RETURN VALUE
This function does not return a value.

SEE ALSO
e1432_debug_level

274 E1432

E1432_TRIGGER_MEASURE(3) E1432_TRIGGER_MEASURE(3)

NAME
e1432_trigger_measure − Manually trigger an E1432

SYNOPSIS
SHORTSIZ16 e1432_trigger_measure(E1432ID hw, SHORTSIZ16 ID,

SHORTSIZ16 wait_after)

DESCRIPTION
e1432_trigger_measuremoves all modules in the group from theTRIGGER state to theMEASURE state.

This function performs a "manual trigger", and does not need to be called when either one of the module in
the group is set to "auto-trigger", or any of the channels in the group is set as an active trigger source. See
the "Measurement setup and control" section earlier in this manual, for a detailed description of the mea-
surement states.

This function waits for all modules to be in theTRIGGER state, before proceeding further, and returns an
error if this state is not reached after a limited time. After the call toe1432_trigger_measurecompletes
successfully, the measurement moves to theCONVERT state, and will stay here until a block is acquired.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

ID is either the ID of a group of channels that was obtained with a call toe1432_create_channel_group, or
the ID of a single channel. If the measurement involves more than one module, it is mandatory that agroup
ID be used, rather than achannel ID.

wait_afterdetermines whether this function will wait for the module to actually move beyond theTRIG-
GER state. If zero, the function does not wait; if non-zero, the function waits.

RESET VALUE
Not applicable.

RETURN VALUE
Return 0 if successful, a (negative) error number otherwise.

SEE ALSO
e1432_arm_measure, e1432_init_measure

E1432 275

E1432_WRITE_SRCBUFFER_DAT A(3) E1432_WRITE_SRCBUFFER_DAT A(3)

NAME
e1432_write_srcbuffer_data − Write arbitrary data to source
e1432_check_src_arbrdy − Check data buffer full/empty status
e1432_get_src_arbstates − Get data buffer full/empty status

SYNOPSIS
SHORTSIZ16 e1432_write_srcbuffer_data(E1432ID hw, SHORTSIZ16 chanID,

LONGSIZ32 *dataPtr,
LONGSIZ32 numwords,
SHORTSIZ16 mode)

SHORTSIZ16 e1432_check_src_arbrdy(E1432ID hw, SHORTSIZ16 chanID,
SHORTSIZ16 mode);

SHORTSIZ16 e1432_get_src_arbstates(E1432ID hw, SHORTSIZ16 chanID,
LONGSIZ32 *xfrbuf_wds, LONGSIZ32 *srcbuf_state_AB,
LONGSIZ32 *srcbuf_state_A, LONGSIZ32 *srcbuf_state_B)

DESCRIPTION
e1432_write_srcbuffer_datatransfers arbitrary data from the host to the module’s transfer buffer where it is
then transferred to the source board in the module. The source buffer internally consists of two buffers
which alternate in continuous mode. Returns 0 if successful or a (negative) error number if an error.

NOTE: Under some circumstances, the data pointed to bydataPtr may be byte swapped after the call to
e1432_write_srcbuffer_data. This may pose a problem for the application if it reuses that data.

hw must be the result of a successful call toe1432_assign_channel_numbers, and specifies the group of
hardware to talk to.

chanID is a channel ID. Group IDs are not yet supported.

dataPtrpoints to the data to be transferred. Only the most significant 24 bits of this data are used, the bot-
tom eight bits are completely ignored.

The data format must be 32bit signed fraction (2’s complement), normalized to full scale. The maximum
value is (2ˆ31)-1 = 2147483647 = 0x7FFFFFFF = 32 bit fractional .999999999. The minimum value is
-(2ˆ31) = -2147483648 = 0x80000000 = 32 bit fractional -1.

276 E1432

E1432_WRITE_SRCBUFFER_DAT A(3) E1432_WRITE_SRCBUFFER_DAT A(3)

Once normalized so that full scale equals 1, floating-point data can be converted as follows:

/* Floats typically have only 23 bits of mantissa, while doubles
typically have 53 bits. So use double to ensure that we
preserve all 24 bits that the source will use. */

double data[DATALENGTH]; /* normalized data */
long arbdata[DATALENGTH]; /* data to be transferred */
double x;

for (i = 0; i < DATALENGTH; i++)
{

x = data[i];
if (x > 8388607.0 / 8388608.0)

x = 8388607.0 / 8388608.0;
else if (x < -1.0)

x = -1.0;
arbdata[i] = floor(8388608.0 * x + 0.5) << 8;

}

For a data value of 1, the output voltage is =e1432_set_range* e1432_set_amp_scale.

numwords is the size of this data array. Normally this must be less than or equal to
E1432_SRC_DAT A_NUMWORDS_MAX, which is 4096.

If all of these are true:

1. The module has no active inputs

2. The module has DRAM

3. The source channel is in source modeE1432_SOURCE_MODE_ARB

then numwordsis not limited toE1432_SRC_DAT A_NUMWORDS_MAX, and can be as large as the
source data buffer size. For more information on the use of DRAM for source buffers, see the manual page
for e1432_set_srcbuffer_mode.

modedetermines the transfer mode and may have the following values:

In E1432_SRC_DAT A_MODE_WAITA, E1432_SRC_DAT A_MODE_WAITB, and
E1432_SRC_DAT A_MODE_WAITAB modes,e1432_write_srcbuffer_datadoes not return until the data
is both transferred to the module’s transfer buffer and from there to the source buffer (A, B, or A concate-
nated with B), if possible.

In E1432_SRC_DAT A_MODE_A, E1432_SRC_DAT A_MODE_B, and
E1432_SRC_DAT A_MODE_AB modes,e1432_write_srcbuffer_datareturns as soon as data is trans-
ferred to the module’s transfer buffer. Transfer to the source board occurs in the background.
E1432_SRC_DAT A_MODE_AB must be used for e1432_set_srcbuffer_mode set to
E1432_SRCBUFFER_CONTINUOUS.

e1432_check_src_arbrdyshould be used to determine when more data may be transferred.

e1432_check_src_arbrdyqueries whether the module’s transfer buffer is ready to accept more data. The
returned value is set to 1 if more data may be transferred and 0 if there is no room currently available for
more data to be transferred. If an error, it returns a (negative) error number.

e1432_get_src_arbstatescan be used to determine which buffers data may be transferred to, for special

E1432 277

E1432_WRITE_SRCBUFFER_DAT A(3) E1432_WRITE_SRCBUFFER_DAT A(3)

case buffer management. Generally this is not needed, ase1432_check_src_arbrdyis an easier way to
determine if the source is ready for more data. This returns 0 if successful or a (negative) error number if
not.

xfrbuf_wdspoints to the number of words remaining in the transfer buffer.*xfrbuf_wdswill be zero for a
successfully completed data transfer.

srcbuf_state_Apoints to the state of the A buffer.

srcbuf_state_Bpoints to the state of the B buffer.

srcbuf_state_ABpoints to the state of the buffer of A concatenated with B. If buffers A and B are in the
same state, then that is the state of AB. If buffers and and B are in different states, then the state of AB is
reported asE1432_SRCBUF_RDY.

These buffer states can have the following values:

E1432_SRCBUF_AVAIL, the buffer is ready to be started to accept data. This is the state immediately
after usinge1432_set_srcbuffer_init.

E1432_SRCBUF_RDY, the buffer is ready to continue to accept data. This is the state after sending at
least some data to the source, but the source is not yet full.

E1432_SRCBUF_FULL, the buffer is full and not ready to accept data. When the srcbuffer mode is set to
E1432_SRCBUFFER_PERIODIC_A, then the B buffer is not used, so the status of the B buffer will be
E1432_SRCBUF_FULL.

The source must be set toE1432_SOURCE_MODE_ARBmode orE1432_SOURCE_MODE_BARB
usinge1432_set_source_modein order for these functions to operate properly.

RESET VALUE
Not applicable.

RETURN VALUE
e1432_write_srcbuffer_dataande1432_get_src_arbstatesreturn 0 if successful, or a (negative) error num-
ber otherwise.

e1432_check_src_arbrdyreturns 1 if more data may be transferred, a 0 if there is no room currently avail-
able for more data to be transferred, or a (negative) error number.

SEE ALSO
e1432_set_range, e1432_set_amp_scale, e1432_set_srcbuffer_init, e1432_set_srcbuffer_mode,
e1432_set_srcbuffer_size

278 E1432

E1432_WRITE_SRCBUFFER_DAT A(3) E1432_WRITE_SRCBUFFER_DAT A(3)

E1432 279

E1432_BOB(5) E1432_BOB(5)

NAME
e1432_bob − Description of E1432 break-out box options

DESCRIPTION
When a smart break-out box (BoB) is attached to an E1432 or E1433 module, the BoB provides additional
input modes that are not available without a BoB. For example, a Charge BoB provides a charge input
which allows us to useE1432_INPUT_MODE_CHARGE. A Mike BoB provides a microphone input
which allows us to useE1432_INPUT_MODE_MIC or E1432_INPUT_MODE_MIC_200V.

E1432_INPUT_MODE_VOLT works the same whether a BoB is attached or not. All BoBs allow the
module to program the low-side to be floating or grounded. (If no smart BoB is present, we accept the
e1432_set_input_low function to program floating/grounded, but we don’t actually do anything except
remember the value.) All BoBs also provide a programmable ICP current source, allowing
E1432_INPUT_MODE_ICP to be used.

For eitherE1432_INPUT_MODE_VOLT or E1432_INPUT_MODE_ICP, the ranges that are available
are the same as when no BoB is attached: 0.1 to 20 volts for the E1432, and 0.005 to 10 volts for the
E1433. The default range setting is 10 volts. The range setting is controlled by thee1432_set_rangefunc-
tion.

For a Charge BoB, the charge input ranges are specified in picocoulombs, and are controlled by the
e1432_set_range_chargefunction. The charge amp has several programmable gain settings, allowing a
very wide set of range settings. For the E1432, the charge range settings available are 0.1 to 50000 pico-
coulombs. For the E1433, the charge range settings available are 0.005 to 50000 picocoulombs, although
ranges below 0.1 are probably not very useful because of noise and offsets. The default charge range set-
ting is 50000 picocoulombs. The Charge BoB also provides a 2 kHz low-pass filter which can be switched
on and off, for the charge input only. This filter can be controlled with thee1432_set_filter_freqfunction.

For a Mike BoB, the microphone input measures volts, and is controlled by thee1432_set_range_mike
function. The microphone input allows the input ranges to extend beyond the ranges that are normally
available. The microphone ranges allowed are 0.01 to 50 volts for the E1432, and 0.0005 to 50 volts for the
E1433. The default microphone range setting is 10 volts.

Both the Charge BoB and the Mike BoB have an option 402 version of the BoB, which provides an addi-
tional high-pass filter which can be enabled or disabled programmatically. This high-pass filter works only
when the Charge BoB is in Charge mode, or the Mike BoB is in Microphone mode
(E1432_INPUT_MODE_MIC or E1432_INPUT_MODE_MIC_200V). This high-pass filter is con-
trolled by thee1432_set_couplingfunction, and is in addition to any other AC coupling on the input. The
high-pass filter is a third order Butterworth filter. On the Charge BoB, the cutoff frequency is about 10 Hz.
On the Microphone BoB, the cutoff frequency is about 22.4 Hz.

SEE ALSO
e1432_set_coupling, e1432_set_filter_freq, e1432_set_input_mode, e1432_set_range,
e1432_set_range_charge, e1432_set_range_mike

280 E1432

E1432_E1431_DIFF(5) E1432_E1431_DIFF(5)

NAME
e1432_e1431_diff − Compares the E1431 and E1432 Host Interface Libraries

DESCRIPTION
This manual page documents some of the basic differences between the E1431 and E1432 Host Interface
libraries. This should be helpful for anyone porting an application that worked with the E1431.

Most functions in the E1431 library have a corresponding function in the E1432 library which performs the
same action. However, all functions, variables, typedefs, and defines start with e1432 instead of e1431.
Many functions were added to the E1432 library that have no corresponding function in the E1431 library.

Almost all E1432 functions have a first parameter of type E1432ID, which is not present in the E1431 func-
tions, which is used to identify what set of hardware to talk to. This is in addition to the channel or group
ID. See the manual page on e1432_assign_channel_numbers for more details.

In the E1431 library, the only type of channel that must be dealt with is an input channel. The channels are
logically numbered 1 through M, where M is the number of input channels.

In the E1432 library, it is more complicated, since an E1432 can have different types of channels. The three
types of channels currently available are input, source and tach/trigger channels. Channel numbers for each
type of channel are numbered starting from one, so there will be input channels 1 through M, source chan-
nels 1 through N, and tach/trigger channels 1 through P, where M is the number of input channels, N is the
number of source channels, and P is the number of tach/trigger channels. See the manual pages
e1432_assign_channel_numbers, e1432_create_channel_group, and e1432_id for more details.

Error numbers start at -1300 for E1432, rather than -1200 for E1431, so that they don’t overlap.

Error numbers are negative rather than positive. This actually works out the same because the E1431
library always returnes the negative of the error number.

Obviously, low-level register and register bit definitions change substantially. In particular, bits in the status
register that are used to indicate the reason for an E1431 VME interrupt have been moved to a different reg-
ister.

Changes to Functions

e1432_create_channel_group does not inactivate other channels within the modules that the channels are in.
It also does not preset the channels in the new group. It also turns on only input channels, while source and
tach channels are turned off.

e1432_set_auto_arm defaults toE1432_AUTO_ARM, rather thanE1432_MANUAL_ARM .

e1432_set_auto_trigger defaults to E1432_AUTO_TRIGGER, rather than
E1432_MANUAL_TRIGGER .

e1432_reset_lbus defaults to having the local bus NOT in reset, while E1431 defaults to having the local
bus in reset.

e1432_set_try_recover defaults to not trapping bus errors.

e1432_read_raw_data, e1432_read_float32_data, and e1432_read_float64_data, all take an extra parameter
calledwhich.

e1432_check_overloads checks only active channels in a group, when given a group ID.
e1431_check_overloads checks all channels in the group, whether active or not. e1432_check_overloads

E1432 281

E1432_E1431_DIFF(5) E1432_E1431_DIFF(5)

replaces the E1431 "adc" parameter with a "half" parameter. This means that the E1432 functioncan’t dis-
tinguish ADC overloads from other differential overloads, but it also means that the E1432 functioncan tell
when a channel is underranged.

The E1431 has the ability to set input ground path to floating or grounded, using function
e1431_set_input_low. The E1432 can’t set this programmatically; instead this is set with a switch on the
breakout box that connects to the inputs. So, there is noe1432_set_input_lowfunction, and the
e1432_set_analog_inputfunction has one fewer parameters.

The E1431 has the ability to replay data through its digital filters. The E1432 does not have this ability, so
all functions relating to this were removed: e1431_replay_data, e1431_replay_data_wanted,
e1431_get_replay_data_size, e1431_set_replay_data_size, and e1431_init_replay.

SEE ALSO
e1432_assign_channel_numbers, e1432_check_overloads, e1432_create_channel_group, e1432_id(5),
e1432_set_auto_arm, e1432_set_auto_trigger, e1432_set_try_recover, e1432_read_raw_data,
e1432_read_float32_data, e1432_read_float64_data, e1432_set_analog_input

282 E1432

E1432_ID(5) E1432_ID(5)

NAME
e1432_id − Description of channel and group IDs

DESCRIPTION
Most functions in the E1432 host interface library take an ID parameter which specifies what channel or
group of channels the function should apply to. The ID can either be a channel ID or a group ID. If a
group ID is used, then the function is applied to each channel contained in the group.

Channel IDs

Channel IDs are logical IDs which are created by a call toe1432_assign_channel_numbers. The
e1432_assign_channel_numbersfunction must be called exactly once, following the call to
e1432_init_io_driver, in order to declare to the library the logical addresses of the E1432 modules that will
be used.

This function checks the existence of an E1432 module at each of the logical addresses given in a list of
logical addresses, and allocates logical channel identifiers for each channel in all of the E1432s. Input
channels, source channels, and tach/trigger channels are kept logically separated. Channel numbers for
each type of channel are numbered starting from one, so there will be input channels 1 through M, source
channels 1 through N, and tach/trigger channels 1 through P, where M is the number of input channels, N is
the number of source channels, and P is the number of tach/trigger channels.

As an example, suppose two logical addresses 100 and 101 are passed to the function, and the logical
address 100 has two 4-channel input SCAs and a 2-channel tach/trigger board, while logical address 101
has three 4-channel input SCAs and a 1-channel source board. In this case, input channel IDs 1 through 8
are assigned to the eight input channels at logical address 100, while input channel IDs 9 through 20 are
assigned to the twelve input channels at logical address 101. Tach/trigger channel IDs number 1 and 2 are
assigned to the two tach/trigger channels at logical address 100, and Source channel ID number 1 is
assigned to the source channel at logical address 101.

To use the ID of an input channel, the input channel number is given as an argument to the
E1432_INPUT_CHAN(ID) macro. (For backwards compatibility with the E1431, the macro currently
does nothing.) To use the ID of a source channel, the source channel number is given as an argument to the
E1432_SOURCE_CHAN(ID) macro. To use the ID of a tach/trigger channel, the tach/trigger channel
number is given as an argument to theE1432_TACH_CHAN(ID) macro. A channel ID is always positive.

For example, to set the range of the third input channel to 10 volts, the source code would look something
like:

status = e1432_set_range(hwid, E1432_INPUT_CHAN(3), 10.0);

Group IDs

Group IDs are logical IDs which are created by a call toe1432_create_channel_group. This function can
be called multiple times to create multiple groups, and each group can contain any combination of chan-
nels, including mixtures of different types of channels. The channel groups can overlap as well.

This function creates and initializes a channel group. A channel group allows you to issue commands to
several E1432 channels at once, simplifying system setup. The state of an individual E1432 channel that is
in more than one channel group, is determined by the most recent operation performed on any group to
which this channel belongs.

If successful, this function returns the ID of the group that was created, which is then used to reference the
channel group in most other functions in this library. A group ID is always negative.

E1432 283

E1432_ID(5) E1432_ID(5)

As a side effect, this function makes all input channels in the channel group active, and all source and tach
channels in the channel group inactive. Unlike the E1431 library, this function does not inactivate other
channels within the modules that the channels are in. Also unlike the E1431 library, this function does not
preset the channels in the new group.

As an example, to create a group consisting of the first three input channels and the eighth and ninth input
channels, the code would like something like this:

SHORTSIZ16 chan_list[5];
SHORTSIZ16 input_group;

chan_list[0] = E1432_INPUT_CHAN(1);
chan_list[1] = E1432_INPUT_CHAN(2);
chan_list[2] = E1432_INPUT_CHAN(3);
chan_list[3] = E1432_INPUT_CHAN(8);
chan_list[4] = E1432_INPUT_CHAN(9);
input_group = e1432_create_channel_group(hw, 5, chan_list);

To create a group consisting of the first two source channels, the code would look something like this:

SHORTSIZ16 chan_list[2];
SHORTSIZ16 source_group;

chan_list[0] = E1432_SOURCE_CHAN(1);
chan_list[1] = E1432_SOURCE_CHAN(2);
source_group = e1432_create_channel_group(hw, 2, chan_list);

Channel Parameters vs. Module Parameters

Some parameters, such as range or coupling, apply to specific channels. When a channel ID is given to a
function that sets a channel-specific parameter, only that channel is set to the new value. When a group ID
is given to a function that sets a channel-specific parameter, all channels in the group are set to the new
value.

Some parameters, such as clock frequency or data transfer mode, apply globally to a module. When a
channel ID is given to a function that applies to a whole module, the channel ID is used to determine which
module. The parameter is then changed for that module. When a group ID is given to a function that
applies to a whole module, the function is applied to each module that contains a channel in the group.

Starting and stopping a measurement is somewhat like setting a module-specific parameter. Starting a mea-
surement starts each active channel in each module that has a channel in the group.

SEE ALSO
e1432_assign_channel_numbers, e1432_create_channel_group, e1432_parm(5)

284 E1432

E1432_INST(5) E1432_INST(5)

NAME
e1432_inst − Installing the E1432 distribution

DESCRIPTION
Getting the Latest Distribution Using FTP

The E1432 distribution is shipped on a DAT tape with the E1432 module. This distribution includes the
E1432 Host Interface library, associated examples, and manual pages.

The latest version of the E1432 distribution can be obtained via anonymous FTP, at:

ftp://hpls01.lsid.hp.com/dsp/products/e1432/software/wk_sta/E1432.X.XX.XX.Z

Revision Numbering

The revision string for each release is of the forma.NN.NN, where "a" is a letter and the "N"s are numbers.
If the letter is an "A", the release is an official release. If the letter is an "X", the release is an interim
release which may provide new features or fix bugs from the previous official release. For each release, the
numerical part of the revision string increases.

For example, the first official release wasA.00.00. The first interim release after that wasX.00.01. The
second interim release wasX.00.02. Eventually, the features and fixes from the interim releases get rolled
into an official release, whose label starts with "A".

For any revision, the revision number of thesema.bin or lib1432.sl file can be found by typing
"what sema.bin " or "what lib1432.sl ". (If the what command is not available,ident might
work.) Both of these probably only work only on unix machines. The latest revision number is

Installing the Distribution

Each file in the FTP directory is a complete release, and will replace all files in the/opt/e1432 and
/opt/vxipnp/hpux/hpe1432 directories. The files in the FTP directory are compressed "update"
files. Similarly, the DAT tape shipped with an E1432 module contains an "update" file. If you are
installing onto an HP-UX system, you would unpack one of these files by doing:

cd / # Start at root directory
uncompress E1432.X.XX.XX.Z # Uncompress the update file
/etc/update -s /E1432.X.XX.XX ’*’ # Unpack the update file

Alternatively, if you are not on HP-UX, you can use tar to unpack the update file (an "update" file is really
just a tar file with a few extra files added). In this case, do this:

cd / # Start at root directory
uncompress E1432.X.XX.XX.Z # Uncompress the update file
tar -xvf E1432.X.XX.XX # Unpack the update file
rmdir E1432 E1432-VXIPNP # Remove extraneous directories
rm -f /system/INDEX # Remove extraneous file
rm -f /system/INFO # Remove extraneous file
rm -f /system/CDFinfo # Remove extraneous file

See the HP-UX reference manual for information about this command. You will have to be root to install
the E1432 distribution.

The E1432 distribution is normally installed in the/opt/e1432 and/opt/vxipnp/hpux/hpe1432
directories. Under the/opt/e1432 directory there are several subdirectories, containing include files (in

E1432 285

E1432_INST(5) E1432_INST(5)

include), host interface libraries (inlib), utility programs (inbin), demo programs (indemo), exam-
ple code (inexample), manual pages (inman), and source code to the Host Interface library (in
hostlib).

Older versions of the E1432 distribution (versions A.02.00 and older) were installed in/usr/e1432
rather than/opt/e1432 . If you have one of these older distributions, it may be necessary for you to
delete the old distribution by hand. In addition, if you have existing code that looks for the E1432 distribu-
tion in the old place, it may be necessary for you to create a symbolic link pointing to the new distribution,
by doing this:

ln -s /opt/e1432 /usr/e1432

Printing the E1432 Function Reference

The E1432 distribution includes manual pages for the E1432 Host Interface library. These manual pages
can be examined on-line, using theptmancommand that is shipped in/opt/e1432/bin . For example,
you can read the manual page for thee1432_init_io_libraryfunction by typing:

ptman e1432_init_io_library

The distribution also includes several nicely formatted sets of these manual pages, in various formats for
different printers or viewers. All manuals come with an index at the end which can be a useful list of the
functions that are available. All of these manuals except the PDF version are shipped compressed, to save
space (the PDF format is not compressible). They can be uncompressed with the UNIXuncompresscom-
mand. The formatted manual files that are available are:

man.pcl.Z This is a PCL version of the manual, that can be printed on any PCL printer (such as an
HP laserjet or HP deskjet printer). Typically, this manual can be printed by typing:

uncompress < /opt/e1432/man/man.pcl.Z | lp -oraw

man.pdf This is a PDF version of the manual. This file may not be present in all distributions.

man.ps.Z This is a postscript version of the manual, that can be printed on any postscript printer.
Typically, this manual can be printed by typing:

uncompress < /opt/e1432/man/man.ps.Z | lp -opostscript

man.txt.Z This is a plain text version of the manual. While not as nice as the postscript or PCL
manuals, it can be printed on any line printer. Howev er, this manual assumes 66 lines
per page, which can be annoying if your printer is configured for only 60 lines per page.

SEE ALSO
ptman(1)

286 E1432

E1432_INTR(5) E1432_INTR(5)

NAME
e1432_intr − Description of E1432 interrupt behavior

DESCRIPTION
E1432 Interrupt Setup

The E1432 VXI module can be programmed to interrupt a host computer using the VME interrupt lines.
VME provides seven such lines, and the E1432 module can be told to use any one of them (see
e1432_set_interrupt_priority).

The E1432 can interrupt the host computer in response to different events. The user can specify amaskof
ev ents on which to interrupt. This mask is created by ORing together the various conditions that the user
wants. The following table, copied from thee1432_set_interrupt_maskmanual page, shows the conditions
that can cause an interrupt:

Interrupt Mask Bit Definitions

Define (in e1432.h) Description

E1432_IRQ_BLOCK_READY Scan of data ready in FIFO
E1432_IRQ_MEAS_ERROR FIFO overflow
E1432_IRQ_MEAS_STATE_CHANGE Measurment state machine changed state
E1432_IRQ_MEAS_WARNING Measurement warning
E1432_IRQ_OVERLOAD_CHANGE Overload/underrange status changed
E1432_IRQ_SRC_STATUS Source channel interrupt
E1432_IRQ_TACHS_AVAIL Raw tach times ready for transfer to other modules
E1432_IRQ_TRIGGER Trigger ready for transfer to other modules

The E1432_IRQ_SRC_STATUSinterrupt is used for source channel overload, overread, and shutdown.
When the source is in arb data mode, this interrupt is also used for the "ready for arb data" interrupt.

TheE1432_IRQ_MEAS_ERRORcurrently is used only for a FIFO overflow. This will interrupt as soon
as the FIFO overflows, but note that the FIFO still has useful data in it which can still be read by the
e1432_read_xxx_datafunctions. e1432_block_availablewill not indicate that a FIFO overflow has
occurred until all of the remaining data is read out of the FIFO.

E1432 Interrupt Handling

To make the E1432 module do the interrupt, both amaskand aVME Interrupt linemust be specified, by
calling e1432_set_interrupt_maskande1432_set_interrupt_priorityrespectively. Once the mask and line
have been set, and an interrupt occurs, the cause of the interrupt can be obtained by reading the
E1432_IRQ_STATUS2_REG register (usinge1432_read_register). The bit positions of the interrupt
mask and status registers match so the defines can be used to set and check IRQ bits.

Once it has done this interrupt, the module will not do any more VME interrupts until re-enabled with
e1432_reenable_interrupt. Normally, the last thing a host computer’s interrupt handler should do is call
e1432_reenable_interrupt.

Events that would have caused an interrupt, but which are blocked becausee1432_reenable_interrupthas
not yet been called, will be saved. Aftere1432_reenable_interruptis called, these saved events will cause
an interrupt, so that there is no way for the host to "miss" an interrupt. However, the module will only do
one VME interrupt for all of the saved events, so that the host computer will not get flooded with too many
interrupts.

For things like "E1432_IRQ_BLOCK_READY", which are not events but are actually states, the module
will do an interrupt aftere1432_reenable_interruptonly if the state is still present. This allows the host

E1432 287

E1432_INTR(5) E1432_INTR(5)

computer’s interrupt handler to potentially read multiple scans from an E1432 module, and not get flooded
with block ready interrupts after the fact.

Host Interrupt Setup

The E1432 Host Interface library normally uses the SICL I/O library to communicate with the E1432 hard-
ware. To receive VME interrupts, a variety of SICL setup calls must be made. The "examples" directory of
the E1432 distribution contains an example of setting up SICL to receive interrupts from an E1432 module.

This is a summary of how to set up SICL to receive an E1432 interrupt:

1. Query SICL for which VME interrupt lines are available, usingivxibusstatusandivxirminfo.

2. Tell the E1432 module to use the VME interrupt line found in step one, using
e1432_set_interrupt_priority.

3. Set up an interrupt handler routine, usingionintr and isetintr. The interrupt handler routine will get
called when the interrupt occurs.

4. Set up interrupt mask in the E1432 module, usinge1432_set_interrupt_mask.

Host Interrupt Handling

When the E1432 asserts the VME interrupt line, SICL will cause the specified interrupt handler to get
called. Typically the interrupt handler routine will read data from the module, and then re-enable E1432
interrupts withe1432_reenable_interrupt. The call toe1432_reenable_interruptmust be done unless the
host is not interested in any more interrupts.

Inside the interrupt handler, almost any E1432 Host Interface library function can be called. This works
because the Host Interface library disables interrupts around critical sections of code, ensuring that commu-
nication with the E1432 module stays consistent. Things that arenotvalid in the handler are:

1. Calling e1432_delete_channel_groupto delete a group that is simultaneously being used by non-
interrupt-handler code.

2. Calling one of the read data functions (e1432_read_raw_data, e1432_read_float32_data, or
e1432_read_float64_data), if the non-interrupt-handler code is also calling one of these functions.

3. Callinge1432_assign_channel_numbersto reset the list of channels that are available to the E1432
library.

As is always the case with interrupt handlers, it is easy to introduce bugs into your program, and generally
hard to track down these bugs. Be careful when writing this function.

SEE ALSO
e1432_set_interrupt_priority, e1432_set_interrupt_mask, e1432_reenable_interrupt

288 E1432

E1432_MULTIMAIN(5) E1432_MULTIMAIN(5)

NAME
e1432_multimain − Multiple mainframe information

DESCRIPTION
E1482B MXI cards can be used to connect multiple VXI mainframes together, so that modules in both
mainframes appear to be in one large logical mainframe. This can be done either with an embedded con-
troller (such as a V/743), or with a MXI cable connected to a host computer.

However, this multi-mainframe setup can be complicated, and it places some restrictions on what measure-
ments can be performed. Before delving into multi-mainframe measurements, you should consider whether
it would be sufficient to simply run separate measurements in two separate mainframes.

There are two separate parts to getting a multi-mainframe measurement working with E143x modules. The
first part is getting the VXI/MXI configuration into a valid state, which involves setting lots of switches on
the MXI cards, and getting the logical addresses of all the modules into the correct ranges. Getting this cor-
rect is mostly independent of the E143x cards, other than just ensuring that the E143x cards have the appro-
priate logical addresses for the mainframe that they are in.

The second part is getting the E143x modules set up correctly. Mostly this involves writing a multi-
mainframe-aware host application, but it also involves several SICL configuration files.

VXI/MXI Configuration for Multi-Mainframe Measurements
Before even worrying about E143x configuration and setup, the VXI/MXI system must be configured prop-
erly.

E1482B Revisions

Very old E1482B MXI cards have a problem with multi-mainframe configurations. The MXI card in the
root mainframe must be revision G2 or later, and the other MXI cards must be revision G or later. The revi-
sion can be found on a metallic label on the ‘‘bottom’’ side of the MXI card. If your MXI cards are too old,
you may get occasional bus errors in your application. A bus error will typically cause the application to
crash, but will not crash the operating system of the host computer. As the number of E143x modules gets
larger, your chances for bus errors increase because more data transfers will take place during a measure-
ment.

E1482B Switch Settings

There are a large number of jumpers and switches on an E1482B MXI card. It is important get these all set
correctly. Incorrect switch settings can cause anything from the MXI card failing to respond, to bus errors
in an application, to module hangs when talking to modules in that mainframe. I believe it is even possible
to damage the MXI card or the VXI mainframe backplane if the S1 and S8 switches (which control VXI
Slot 0 operation) are set incorrectly.

The MXI card switch settings are well documented in the E1482B manual. This manual has nice pictures
of what the switch settings should be, both for the ‘‘root’’ mainframe and the ‘‘non-root’’ mainframes, and
for either an embedded controller or a host computer connected by MXI.

The next few paragraphs attempts to document most of these switch settings, but it’s generally a lot easier
and less error-prone to use the pictures in the E1482B manual.

The MXI card is the slot 0 controller for all non-root mainframes. The MXI card is also the slot 0 con-
troller for the root mainframe if an external computer is used. The default shipped configuration for the
MXI card is mostly correct for these mainframes where the MXI card is the slot 0 controller. There are two
things that must change:

E1432 289

E1432_MULTIMAIN(5) E1432_MULTIMAIN(5)

* the logical address (see separate section below)
* possibly the VME and INTX terminators

The six VME and four INTX terminators need to be removed for MXI modules that are not at the ends of
the daisy chain. For systems that use an embedded controller, this would be needed only when there are
three or more mainframes (with two mainframes, both MXI cards are at the ends of the daisy chain). For
systems that use MXI to connect to an external controller, the "daisy chain" includes the external controller
itself, so this is an issue when there are two or more mainframes.

If an embedded controller is used in the root mainframe, then the MXI module isnot the slot 0 controller
for the root mainframe. This requires several switch settings to be changed. Table 2-1 ‘‘Configuration Set-
tings’’ in the E1482B manual lists the changes from the default settings:

* the logical address (see separate section below)
* not the slot-0 controller (S1, S8)
* MXI System Controller enabled (S4)
* set the VME timeout to 200 usec (W6)
* set VME BTO chain position to 1 extender, non-slot0 (W7)
* set MXI bus timeout to 100 usec (W8)
* do not source CLK10 (W9, W10)

Logical Addresses

The logical address windows required by MXI are explained in the E1482B manual on pages 2-34 through
2-36. The next few paragraphs attempt to summarize those rules, but you may want to refer to the E1482B
manual as well. The rules apply to all modules in a mainframe.

Each mainframe gets a window of logical addresses. No windows can overlap. The window size (number
of possible logical addresses in a mainframe) must be a power of two. The starting address of the window
must be zero, or an address which is a multiple of the window size.

Logical address zero is taken by the system controller, which is either an embedded controller or a host
computer connected by MXI cable. If it is a host computer connected by a MXI cable, then the logical
address windows of all mainframes must not include logical address zero (since zero is in the host com-
puter, not in any mainframe).

For very-large-channel-count systems, it is best to allocate 32 logical addresses to each mainframe. The
first mainframe would have logical addresses 0-31 (or 16-31 if there is an external computer at logical
address 0). The second mainframe would have logical addresses 32-63, the third would have 64-95, the
fourth 96-127, and so on. This ensures that each mainframe has enough logical addresses, and that the sys-
tem will not run out of logical addresses too quickly.

The logical address of the MXI card itself need not be within the block of 32 addresses assigned to a main-
frame. One good method is to put the first MXI card a logical address 1, the next MXI card at logical
address 2, and so on.

Dynamic Configuration of Logical Addresses

The MXI cards do not support dynamic configuration, and so must be set to fixed logical addresses. Typi-
cally the addresses chosen would be 1 for the first MXI card, 2 for the second, and so on.

The E1432 card does support dynamic configuration. Dynamic configuration means that you put the E1432
cards all at logical address 255, and the system resource manager automatically figures out an appropriate
logical address and tells the module to use that.

290 E1432

E1432_MULTIMAIN(5) E1432_MULTIMAIN(5)

For small systems, dynamic configuration is probably not very useful. For large systems, dynamic configu-
ration is quite useful.

There are limits to dynamic configuration. Typically, dynamic configuration does not work on the first card
in a mainframe, but works on all the other cards. The first card must be set to a fixed appropriate logical
address for that mainframe. The other cards in the mainframe will typically get assigned logical addresses
increasing from the address of the first card.

E1482B Connections

If more than two mainframes are needed, daisy-chain them all. The first mainframe is the root mainframe.
Each mainframe after the first is a non-root mainframe.

The MXI cables themselves are directional. One end of the cable is enclosed and has only single connec-
tors, while the other end of the cable is open and has dual connectors. The enclosed end must be nearest to
the root mainframe.

The E1482B manual mentions a ‘‘Level 2 Extender’’ configuration when using four or more mainframes.
Do not use that setup. Use a simple daisy-chain setup.

Embedded Controller VME Bus Timeout

This applies only to systems using embedded controllers. Certain embedded controllers try to detect VME
bus timeout, and this conflicts with the MXI cards which also try to detect VME bus timeout. These
embedded controllers must be disabled from detecting the VME bus timeout, typically by adjusting a
jumper or switch on the back of the module.

This is an issue for the E1405B Command Module, the E1406A Command Module, the E1499 V/382, and
the RADI-EPC7 embedded controllers. The E1482B manual shows how to adjust these modules to not
detect VME bus timeout. However, note that the E1405B and E1499 are not supported with the E143x
module, and the E1406B and RADI-EPS7 are not recommended by HP.

This is not an issue for the V/743 embedded controller, because the V/743 VME bus timeout is much
longer than the timeout used by the MXI card.

SICL Versions

SICL is an I/O library used on HP-UX. This low-level I/O library is used by the E143x host interface
library when communicating with the VXI system.

Systems that use the E143x Plug&Play libraries do not directly use SICL, and instead use the VISA library
defined by the Plug&Play standard. However, on HP-UX the VISA library internally uses SICL, so in the
end SICL is used on all HP-UX systems.

Multi-mainframe systems generally involve a larger number of E143x modules than single-mainframe sys-
tems. This larger number of modules has a tendency to find problems in the SICL memory mapping code
that runs in the HP-UX machine. It is important to use the latest version of SICL, which is somewhat less
error-prone. As of July 1997, the latest officially released versions are C_03_09 for HP-UX 9.05, and
E.01.01 for HP-UX 10.20. E.01.01 on 10.20 seems to be more reliable than C_03_09 on 9.05. There is
also a pre-release unsupported E.01.04 version of SICL for 10.20 available at
ftp://hpls01.lsid.hp.com/dsp/temp/libsicl.sl .

E1432 291

E1432_MULTIMAIN(5) E1432_MULTIMAIN(5)

VXI and SICL Limits

The A24 memory space holds a total of 16 MBytes of memory, though sometimes half of that memory
space is wasted due to limits on what the E1482B MXI card can map into the host computer.

The E143x modules each use 256 KBytes of A24 memory space. Assuming 16 MBytes of A24 memory is
usable, that limits the number of E143x modules to64. E1432 modules with serial number prefixes below
3647 use 1 MByte of A24 space instead of 256 KBytes, so only 16, and sometimes only 8, of these older
modules would work. These older E1432 modules can be upgraded in the field by HP to use only 256
KBytes of A24 space.

The limit of 64 E143x modules (including E1434) is an absolute maximum for a VXI system. The limit
will be smaller if A24 space is used by other modules. Other modules that use A24 space include the
E1562 SCSI Disk module and the E1485 Signal Processor module.

The E1482B MXI card allows a daisychain of at most eight devices. If an external computer is used, it
counts as one device, so at most seven VXI mainframes can be used in this case. Also, the total cable
length of a MXI daisychain can be at most 20 meters.

For systems that use a very large number of E143x modules, the E1482B MXI card can place additional
limitations on how many E143x modules can be present in each mainframe. The E1482B MXI card limits
the amount of A24 memory used by each mainframe to a power of two bytes. This typically means that
you must use exactly a total of eight E143x (or E1562) modules in each mainframe, or there will be addi-
tional A24 memory allocated to the mainframe that is wasted. This waste is not a problem unless you are
building a system that needs most of the total A24 memory space.

For versions X.03.15 and earlier of the non-Plug&Play E143x host interface library, there was an additional
restriction. When using MXI to connect to anexternal computer, the the maximum number of E143x mod-
ules was only 8. This was due to limitations in the SICL I/O library, which have been worked around in
versions X.03.16 and later.

For users of the Plug&Play E143x library, using MXI to connect to an external computer, the number of
E143x modules seems to be limited to 8. The limit can be increased to around 13 E143x modules, but only
when using at least pre-release version E.01.04 of SICL and VISA on HP-UX 10.20.

As of August 1997, this E.01.04 version of SICL and VISA is not officially released, but a patched version
is available at ftp://hpls01.lsid.hp.com/dsp/temp/libsicl.sl and
ftp://hpls01.lsid.hp.com/dsp/temp/libvisa.sl . With these patched versions of SICL
and VISA, the limit is around 13 E143x modules.

Convincing SICL to use all of A24 Space

The default configuration of SICL on HP-UX will not even try to use all of A24 space. Because of this, the
maximum number of E143x modules in a system can be severely restricted unless the configuration is
changed.

When using MXI to connect to an external computer, this limitation will prevent using more than 24 E143x
modules. If any E1432 modules are old enough that they use 1MB of A24 space, then this limitation will
prevent the use of more than 4 E1432 modules.

To fix this, and convince SICL to use all of A24 space, two lines in the iproc.cf configuration file must be
modified. On HP-UX 9.05, this file is at /usr/pil/etc/iproc.cf. On HP-UX 10.20, this file is at
/etc/opt/sicl/iproc.cf.

292 E1432

E1432_MULTIMAIN(5) E1432_MULTIMAIN(5)

Change:

boot ivxirm -p -I vxi

to:

boot ivxirm -p -M -I vxi

and change:

sysreset vxi ivxirm -t &

to:

sysreset vxi ivxirm -M -t &

After making this change, the iproc daemon must be killed and restarted.

E143x Configuration for Multi-Mainframe Measurements
Once the VXI/MXI system is properly configured, E143x modules must be configured and set up correctly.

Old E143x Modules

Older E1432 (but not E1433 or E1434) modules have a bug in the VXI interface which shows itself in one
specific configuration. The configuration with the problem is a multi-mainframe system where an embed-
ded V/743 controls the first mainframe, and MXI cables connect the first mainframe to subsequent main-
frames. Data read from E1432 modules in the non-root mainframes is occasionally corrupted.

HP LSD has a new VXI interface ROM that can be installed in old E1432 modules which fixes this prob-
lem.

In addition, older E1432, E1433, and E1434 modules have a different bug in the VXI interface which can
cause problems with the G5 version of the E1482B MXI card. This bug is generally quite rare, but can
cause "Data Handshake Timeout" or errors due to incorrect data transfer to the host computer.

HP LSD has a new VXI interface ROM that can be installed in older E143x modules which fixes this prob-
lem.

VXI TTLTRG direction

The VXI bus provides eight TTLTRG lines, which are open collector lines connected to all modules in a
mainframe. The E143x modules use two of these eight lines, one for a common sample clock, and the
other for a common sync and trigger line. This allows multiple E143x modules to sample simultaneously,
and allow trigger events in one E143x module to get propagated to all modules.

The E1482B MXI cards connect the VXI TTLTRG lines between VXI mainframes in only one direction at
a time. Either direction is supported by MXI, and either direction can be made to work with the E143x
modules. However, we only document one direction, and we encourage everyone to use this one direction,
in order to make things less confusing and to simplify support of multi-mainframe systems.

We always document that the root mainframe must generate the TTLTRG lines, and all non-root main-
frames must therefore receive the TTLTRG lines.

Because the TTLTRG lines are driven in only one direction, there are limits on what kinds of measurements

E1432 293

E1432_MULTIMAIN(5) E1432_MULTIMAIN(5)

can be done with a multi-mainframe system.

We refer to the mainframe generating TTLTRG as the ‘‘master’’ mainframe, and all other mainframes as
‘‘slave’’ mainframes. If you follow our default of having the root mainframe generate TTLTRG, then the
root mainframe is the same as the master mainframe.

Controlling TTLTRG Direction

The direction of the TTLTRG lines is controlled by two SICL configuration files. On HP-UX 9.05, these
files are/usr/pil/etc/vxi16/ttltrig.cf and /usr/pil/etc/vxi16/oride.cf . On HP-
UX 10.20, the files are /etc/opt/sicl/vxi16/oride.cf and
/etc/opt/sicl/vxi16/ttltrig.cf .

If the oride.cf file is used, it overrides the settings inttltrig.cf . Because the settings in
oride.cf are less supported and harder to explain, we recommend thatoride.cf not be used for set-
ting the TTLTRG direction.

Instead, usettltrig.cf to set the TTLTRG direction. This file is a little easier to understand - you
specify a logical address for each TTLTRG line, and the mainframe that contains that logical address will
be the one that generates TTLTRG.

The default forttltrig.cf is that logical address 0 generates TTLTRG. For embedded controller sys-
tems this works without modification, because the embedded controller is in the root mainframe and we
want the root mainframe to generate the TTLTRG lines. For systems with an external controller, the logical
addresses inttltrig.cf should be changed to the address of any module in the root mainframe.

Internal E143x TTLTRG driver

When you calle1432_create_channel_group, the last channel in this list becomes a TTLTRG driver for the
group of modules. This TTLTRG driver is purely an internal thing, not something the user needs to worry
about, and normally is hidden from the user.

However, you have to make sure that the TTLTRG driver ends up in the master mainframe so it can suc-
cessfully drive the TTLTRG line for all modules in all mainframes.

For this reason, when you calle1432_assign_channel_numbers, you should list the logical addresses in
reverse order. That way, the highest channel ID (which will become the TTLTRG driver when you do
e1432_create_channel_group) will end up in the master mainframe.

This is opposite of what people intuitively try to do. It means that higher-numbered channels are in the root
mainframe and lower-numbered channels are in the non-root mainframe. However, this setup does work
and is the one that is tested by HP.

Measurement Arm

Because of synchronization problems caused by the one-directional nature of the TTLTRG lines, you must
use manual arm, not auto arm or RPM arm, for multi-mainframe measurements. By manual arm, we mean
that the host computer must do the arm usinge1432_arm_measure(or equivalent, see ‘‘Measurement Trig-
ger’’ below).

Although we haven’t tested it, thee1432_set_mmf_delayfunction should help work around this limitation
to manual arm, if auto arm or RPM arm really are necessary for a particular multi-mainframe application.

294 E1432

E1432_MULTIMAIN(5) E1432_MULTIMAIN(5)

Measurement Trigger

If you use manual trigger in addition to manual arm, you can simply usee1432_arm_measurefor the arm
ande1432_trigger_measurefor the trigger.

However, if you want some other trigger (external trigger, input trigger, source trigger, tach trigger), then
you must use the special multi-mainframe versions ofe1432_arm_measure. Instead of just using
e1432_arm_measure, you must call:

e1432_arm_measure_master_setup(hw, master_id);
e1432_arm_measure(hw, global_id, 0);
e1432_arm_measure_slave_finish(hw, slave_id);
e1432_arm_measure_master_finish(hw, master_id);

The manual pages for these function goes into a little more detail about the IDs that should be used.

Only E143x modules in the master mainframe can trigger a multi-mainframe E143x measurement. This is
true for any trigger mode except manual trigger, where the trigger does not come from a module at all.

Phase Performance

Phase specs will be degraded by the delay that the MXI cables add to the sample clock. A customer-written
calibration to correct this is certainly possible, but we have not tested this. The delay may be insignificant
for many low-frequency applications, since the phase error scales with frequency.

A system with the two MXI cards, and a 1 Meter cable, shows a 75 nsec sample clock delay to the non-root
mainframe. This corresponds to a -0.69 degree phase error at 25.6 kHz.

A 4 Meter cable adds about 17 nsec more delay, for a total of 92 nsec clock delay in the non-root main-
frame. This corresponds to a -0.85 degree phase error at 25.6 kHz.

The MXI cable adds about 1.7 nsec per foot of cable.

Each daisy-chained mainframe adds another increment of delay, but only for the additional cabling length.

In theory, it should be possible to use the SMB Trig In input on the MXI card with an external clock source
to drive all the mainframes simultaneously. This should eliminate most of the mainframe-to-mainframe
phase errors. This might be useful when better phase accuracy is desired, but the application does not want
to deal with mainframe-to-mainframe calibration and correction.

For more information about using the MXI Trig In connector, see the end of the manual page for
e1432_set_clock_source, and the manual page fore1432_set_auto_group_meas.

Local Bus

The VXI local bus does not cross the MXI cable. The local bus only connects adjacent VXI modules. It is
possible to set up measurements that use the local bus, but each mainframe will need to have its own mod-
ule that reads the E143x local bus data (such as an E1562 disk module).

SEE ALSO
e1432_init_measure, e1432_arm_measure, e1432_arm_measure_master_finish, e1432_set_mmf_delay,
e1432_trigger_measure

E1432 295

E1432_OCTAVE(5) E1432_OCTAVE(5)

NAME
e1432_octave − Overview of E1432 Octave functionality

DESCRIPTION
1D1 Option

This option must be installed in a particular module in order for Octave measurements to run in it. Without
this option, Octave parameters can still be set up but thee1432_init_measure() call will fail with error
-1621, "Required option not installed".

The 1D1 option will normally be ordered when a module is ordered from the factory. Howev er, provisions
have been made to allow users to upgrade their units in the field. To do this, the user must supply the serial
number of the module which is to receive the upgrade. Theprogopt program can be used to obtain the
exact serial string, by running "progopt -S". The "-L" option may be necessary if the module is not located
at the default logical address. Theprogoptprogram is also used to install the option, which is in the form
of a codeword from the factory, by running "progopt -A 12345678", where "12345678" represents the
codeword. Running "progopt -R" will verify that the codeword was written. Yet to be implemented is the
process of ordering the 1D1 option upgrade and receiving the codeword. For now, this will be handled on a
case by case basis.

Octave API functions

e1432_set_octave_mode(), e1432_get_octave_mode()
E1432_OCTAVE_MODE_OFF No Octave processing
E1432_OCTAVE_MODE_FULL Full Octave processing
E1432_OCTAVE_MODE_THIRD Third Octave processing

e1432_set_octave_avg_mode(), e1432_get_octave_avg_mode()
E1432_OCTAVE_AVG_MODE_EXP Exponential averaging
E1432_OCTAVE_AVG_MODE_LIN Linear averaging

e1432_set_octave_hold_mode(), e1432_get_octave_hold_mode()
E1432_OCTAVE_HOLD_MODE_OFF No hold mode
E1432_OCTAVE_HOLD_MODE_MAX Maximum value held
E1432_OCTAVE_HOLD_MODE_MIN Minimum value held

e1432_set_octave_start_freq(), e1432_get_octave_start_freq(),
e1432_set_octave_stop_freq(), e1432_get_octave_stop_freq()
Start/stop frequency band
octave_start_freq: 3.15 Hz minimum
octave_stop_freq: 20 KHz maximum

e1432_set_octave_int_time(), e1432_get_octave_int_time()
Integration/average time for Linear averaging.
octave_int_time: .00953125 to 10,000 seconds

e1432_set_octave_time_const(), e1432_get_octave_time_const()
Time constant time step for Exponential averaging.
octave_time_const: .0078125 to 1.0 seconds

e1432_set_octave_time_step(), e1432_get_octave_time_step()
Update time step/interval.
octave_time_step: .00953125 to 10,000 seconds

e1432_octave_ctl()

296 E1432

E1432_OCTAVE(5) E1432_OCTAVE(5)

E1432_OCTAVE_CTL_STOP Stop/Pause Octave processing
E1432_OCTAVE_CTL_RESTART Restart Octave processing
E1432_OCTAVE_CTL_CONTINUE Continue paused Octave average

e1432_get_octave_blocksize()
The number of Octave samples per block is returned.

e1432_get_current_data()
Gets the most recent Octave data.

Enhanced existing functions

e1432_set_enable()
Enable typeE1432_ENABLE_TYPE_OCTAVE added.

e1432_read_float64_data(), e1432_read_float32_data()
Data typeE1432_OCTAVE_DAT A added.

API considerations

There are a several constraints and/or unavailable features that exist when Octave processing is active.

Most trigger types are supported: auto, external, tachometer, source, and RPM arm. However, input trigger-
ing is not supported. Also, trigger delays (other than 0) are not supported.

Decimation filtering and associated features (such as order tracking) are unavailable when Octave process-
ing is active.

The clock frequency, as set bye1432_set_clock_freq, must be 65536.

Peak and RMS values are available with Octave processing, without the need to turn on Peak/RMS process-
ing. However, only "filtered", and not "block" processing is done.

Octave data is in mean-squared form and scaled as such. A square root must be taken to convert it into
RMS data.

Because Octave processing is not independent from the time data processing, the time parameters, such as
blocksize, may still determine the update rate, if they result in an update rate longer than the Octave update
rate. Note that this is true, even, whene1432_set_enable() is used to turn
E1432_ENABLE_TYPE_TIME data off.

It may be nececessary to turnE1432_ENABLE_TYPE_TIME data off for long Octave update rates. See
the documentation fore1432_set_octave_int_time(), e1432_set_octave_time_step().

Octave data is not currently supported in "eavesdrop" mode (while time data is being throughput to the
local bus) but thee1432_get_current_data() function may be used as an alternative.

Octave currently works with all types of data_mode, as set bye1432_set_data_mode, and data_size, as set
by e1432_set_data_size.

When reading multiple data types withe1432_read_float64_data, etc, E1432_OCTAVE_DAT A is currently
the last in the order of data to be read.

Octave downloadable

E1432 297

E1432_OCTAVE(5) E1432_OCTAVE(5)

Currently, the Octave downloadable is in the form of a file named soct.bin and it is kept in the same direc-
tory as the substrate downloadable, sema.bin. It does not replace sema.bin, but rather enhances functional-
ity to include octave measurements. It is automatically downloaded when octave measurements are
selected, using thee1432_set_octave_mode(). See the documentation for these functions for more details.
Normally, a user has no need to be concerned with this file.

SEE ALSO
progopt(1), e1432_set_octave_mode(3), e1432_set_octave_avg_mode(3),
e1432_set_octave_hold_mode(3), e1432_set_octave_start_freq(3), e1432_set_octave_stop_freq(3),
e1432_set_octave_int_time(3), e1432_set_octave_time_const(3), e1432_set_octave_time_step(3),
e1432_octave_ctl(3), e1432_get_octave_blocksize(3), e1432_get_current_data(3),
e1432_set_trigger_delay(3)

298 E1432

E1432_PARM(5) E1432_PARM(5)

NAME
e1432_parm − Description of E1432 parameters

DESCRIPTION
Some parameters, such as range or coupling, apply to specific channels. When a channel ID is given to a
function that sets a channel-specific parameter, only that channel is set to the new value.

Some parameters, such as clock frequency or data transfer mode, apply globally to a module. When a
channel ID is used to change a parameter that applies to a whole module, the channel ID is used to deter-
mine which module. The parameter is then changed for that module.

Starting and stopping a measurement is somewhat like setting a global parameter. Starting a measurement
starts each active channel in each module that has a channel in the group.

After firmware is installed, and after a call to e1432_preset, all of the parameters (both channel-specific and
global) in an E1432 module are set to their default values. For channel-specific parameters, the default
value may depend on the type of channel. Some channel-specific parameters apply only to a specific type
of channel. For example, tach holdoff applies only to tach channels. Setting such a parameter for a channel
that doesn’t make sense will result in an error.

At the start of a measurement, the E1432 firmware sets up all hardware parameters, and ensures that the
input hardware is settled before starting to take data. The firmware also ensures that any digital filters have
time to settle. This ensures that all data read from the module will be valid.

However, after a measurement starts, E1432 parameters can still be changed. The effect of this change
varies, depending on the parameter. For some parameters, changing the value immediately aborts the mea-
surement. For other parameters, the measurement is not aborted, but the changed parameter value is saved
and not used until a new measurement is started. For still other parameters, the parameter change takes
place immediately, and the data coming from the module may contain glitches or other effects from chang-
ing the parameter.

At this time, there is no way to tell the module to wait for settling when changing a parameter in the middle
of a measurement. The only way to wait for settling is to stop and re-start the measurement. At this time,
there is no way to disable the settling that takes place at the start of a measurement.

This section shows which parameters are global parameters, which are channel-specific, and what types of
channels the channel-specific parameters apply to. Default values are shown for all of these parameters. In
addition, each parameter is categorized as "abort", "wait", "immediate", or "glitch" depending on the behav-
ior when this parameter is changed during a running measurement. Those with "abort" cause the measure-
ment to abort. Those with "wait" don’t take effect until the start of the next measurement. Those with
"immediate" take effect immediately. Those with "glitch" take effect immediately, and may cause glitches
in the data that is read back, or on the source output if the parameter is applied to a source channel.

E1432 299

E1432_PARM(5) E1432_PARM(5)

Global Parameters
Parameter Default Value Changes

append_status Off Immediate
arm_channel None Immediate
arm_mode Auto Arm Immediate
arm_time_interval 1 Sec Immediate
auto_group_meas On Wait
auto_trigger Auto Trigger Abort
avg_mode None Wait
avg_number 10 Wait
avg_update 10 Wait
avg_weight 1 Immediate
blocksize 1024 Abort
cal_dac 0 Immediate
cal_voltage 0 Volts Immediate
calin Grounded Immediate
center_freq 12.8 kHz Immediate
clock_freq 51.2 kHz Abort
clock_master Off Abort
clock_source Internal Abort
data_mode Block Mode Abort
data_port VME Abort
data_size 16 Bit Integer Abort
decimation_output Single Pass Wait
decimation_oversample Off Wait
decimation_undersamp 1 Wait

300 E1432

E1432_PARM(5) E1432_PARM(5)

Global Parameters (continued)
Parameter Default Value Changes

delta_order 0.1 Wait
fifo_size 0 (Use All DRAM) Wait
filter_settling_time 64 samples Wait
internal_debug 0 Immediate
interrupt_mask 0 Immediate
interrupt_priority None Immediate
lbus_mode Pipe Immediate
lbus_reset Off (Not Reset) Immediate
max_order 10 Wait
meas_time_length 0 (Run Forever) Immediate
mmf_delay 0 Immediate
multi_sync Off Abort
overlap 0 Wait
peak_decay_time 1.5 Sec Wait
peak_mode Off Wait
pre_arm_mode Auto Arm Immediate
ramp Off Immediate
rms_avg_time 1 Sec Wait
rms_decay_time 0 Sec Wait
rms_mode Off Wait
span 20 kHz Immediate
sumbus Off Immediate
trigger_delay 0 Wait
trigger_ext Off Immediate
trigger_master Off Immediate
triggers_per_arm 1 Immediate
ttltrg_clock TTLTRG1 Abort
ttltrg_gclock TTLTRG1 Abort
ttltrg_satrg TTLTRG0 Abort
ttltrg_trigger TTLTRG0 Abort
window Uniform Glitch
xfer_size 0 (Use blocksize) Wait
zoom Off Wait

E1432 301

E1432_PARM(5) E1432_PARM(5)

E1432 51.2 kHz Input Parameters
Parameter Default Value Changes

active On Abort
anti_alias_digital(*) On Abort
auto_range_mode Up/Down Immediate
calc_data Time Wait
coupling DC Glitch
enable On Immediate
filter_freq 200 kHz Immediate
input_high Normal Glitch
input_low Floating Glitch
input_mode(*) Volt Glitch
range 10 Volts Glitch
range_charge 50000 picoCoulombs Glitch
range_mike 10 Volts Glitch
trigger_channel Off Immediate
trigger_level lower -10% Immediate
trigger_level upper 0% Immediate
trigger_mode Level Immediate
trigger_slope Positive Immediate

E1433 196 kHz Input Parameters
Parameter Default Value Changes

active On Abort
anti_alias_digital On Abort
auto_range_mode Up/Down Immediate
calc_data Time Wait
coupling DC Abort
coupling_freq 1 Hz Abort
enable On Immediate
filter_freq 200 kHz Immediate
input_high Normal Glitch
input_low Floating Glitch
input_mode(*) Volt Glitch
input_offset 0 Glitch
range 10 Volts Glitch
range_charge 50000 picoCoulombs Glitch
range_mike 10 Volts Glitch
trigger_channel Off Abort
trigger_level lower -10% Glitch
trigger_level upper 0% Glitch
trigger_mode Level Abort
trigger_slope Positive Abort
weighting Off Wait

(*) Input mode is listed as channel-specific, but it actually applies to all channels within an SCA unless
there is a smart break-out box attached to the SCA. Similarly, anti_alias_digital applies to all channels
within an SCA for the E1432 51.2 kHz input.

For the following table, there is an additional column which applies only when using the E1434 65 kHz
arbitrary source. The E1434 channels come in pairs, and some parameters are shared ("coupled") between
each pair of channels. If they are coupled, then setting the parameter for one channel of the pair automati-
cally sets it for the other channel of the pair. In addition, a few parameters apply only to the first of the pair

302 E1432

E1432_PARM(5) E1432_PARM(5)

of channels, due to hardware constraints. The last column in the table specifies if the parameter is coupled.
"Yes" means the parameter is coupled, "No" means that there is no coupling and the parameter can be set
independantly for the two channels, and "1 Chan" means that it only makes sense to set this parameter for
the first channel, and it is ignored if set for the second channel.

E1434 65 kHz Arbitrary Source
Option 1D4 Single-channel Source Parameters

Parameter Default Value Changes E1434 Coupled

active Off Abort No
amp_scale 1.0 Immediate No
anti_alias_digital On Wait 1 Chan
duty_cycle 0.5 Wait Yes
filter_freq 25.6 kHz Wait 1 Chan
ramp_rate 1 Second Wait Yes
range 0.041567 Volt Glitch No
sine_freq 1 kHz Immediate No
sine_phase 0 Degrees Glitch No
source_blocksize 0 (Use input blocksize) Wait Yes
source_centerfreq 250 Hz Wait No
source_cola Off Wait 1 Chan
source_mode Sine Abort Yes
source_output Normal Abort No
source_seed 3 Wait Yes(*)
source_span 0 (Use input span) Wait Yes
source_sum Off Wait 1 Chan
srcbuffer_init Empty Wait Yes
srcbuffer_mode Periodic Wait Yes
srcbuffer_size 1024 Wait Yes
srcparm_mode Immediate Immediate Yes
trigger_channel Off Wait Yes

(*) The single shared value of source seed generates unique sequences on the two E1434 channels.

Option AYF Tachometer Parameters
Parameter Default Value Changes

active On Wait
input_high Normal Immediate
pre_arm_rpm 600 RPM Immediate
rpm_high 6000 RPM Immediate
rpm_interval 25 RPM Immediate
rpm_low 600 RPM Immediate
rpm_smoothing 0 Immediate
tach_decimate 0 Immediate
tach_holdoff 10 Microseconds Immediate
tach_max_time 30 Seconds Immediate
tach_ppr 1 Immediate
trigger_channel Off Wait
trigger_level lower -0.05 Volts Immediate
trigger_level upper 0 Volts Immediate
trigger_slope Positive Immediate

E1432 303

E1432_PARM(5) E1432_PARM(5)

SEE ALSO
e1432_id(5)

304 E1432

Index() Index()

e1432_arm_measure(3), 18
e1432_arm_measure_master_finish(3), 19
e1432_arm_measure_master_setup(3), 19
e1432_arm_measure_slave_finish(3), 19
e1432_assign_channel_numbers(3), 21
e1432_assign_channels(3), 21
e1432_auto_range(3), 23
e1432_auto_zero(3), 25
e1432_block_available(3), 27
e1432_bob(5), 280
e1432_cached_parm_update(3), 29
e1432_channel_group_add(3), 30
e1432_channel_group_remove(3), 30
e1432_check_overloads(3), 31
e1432_check_src_arbrdy(3), 276
e1432_check_src_overload(3), 33
e1432_check_src_overread(3), 33
e1432_check_src_shutdown(3), 33
e1432_check_src_underrun(3), 33
e1432_create_channel_group(3), 34
e1432_debug_level(3), 36
e1432_delete_all_chan_groups(3), 37
e1432_delete_channel_group(3), 37
e1432_display_state(3), 38
e1432_dsp_exec_query(3), 39
e1432_e1431_diff(5), 281
e1432_fill_error_string(3), 45
e1432_finish_measure(3), 40
e1432_get_active(3), 103
e1432_get_amp_scale(3), 105
e1432_get_amp_scale_limits(3), 51
e1432_get_anti_alias_analog(3), 108
e1432_get_anti_alias_digital(3), 109
e1432_get_append_status(3), 111
e1432_get_arm_channel(3), 115
e1432_get_arm_mode(3), 116
e1432_get_arm_time_interval(3), 118
e1432_get_arm_time_interval_limits(3), 51
e1432_get_auto_arm(3), 116
e1432_get_auto_group_meas(3), 119
e1432_get_auto_range_mode(3), 121
e1432_get_auto_trigger(3), 122
e1432_get_avg_mode(3), 123
e1432_get_avg_number(3), 125
e1432_get_avg_number_limits(3), 51
e1432_get_avg_update(3), 126
e1432_get_avg_update_limits(3), 51
e1432_get_avg_weight(3), 127
e1432_get_avg_weight_limits(3), 51
e1432_get_blocksize(3), 128
e1432_get_blocksize_current_max(3), 128
e1432_get_blocksize_limits(3), 51
e1432_get_cal_dac(3), 132
e1432_get_cal_dac_limits(3), 51

E1432 1

Index() Index()

e1432_get_cal_voltage(3), 133
e1432_get_cal_voltage_limits(3), 51
e1432_get_calc_data(3), 130
e1432_get_calin(3), 134
e1432_get_center_freq(3), 136
e1432_get_center_freq_limits(3), 51
e1432_get_clock_freq(3), 137
e1432_get_clock_freq_limits(3), 51
e1432_get_clock_master(3), 139
e1432_get_clock_source(3), 140
e1432_get_coupling(3), 142
e1432_get_coupling_freq(3), 144
e1432_get_coupling_freq_limits(3), 51
e1432_get_current_data(3), 41
e1432_get_current_rpm(3), 42
e1432_get_current_value(3), 43
e1432_get_data_mode(3), 146
e1432_get_data_port(3), 148
e1432_get_data_rpm(3), 42
e1432_get_data_size(3), 151
e1432_get_decimation(3), 44
e1432_get_decimation_bandwidth(3), 154
e1432_get_decimation_output(3), 156
e1432_get_decimation_oversample(3), 158
e1432_get_decimation_undersamp(3), 159
e1432_get_decimation_undersamp_limits(3), 51
e1432_get_delta_order(3), 153
e1432_get_delta_order_limits(3), 51
e1432_get_duty_cycle(3), 161
e1432_get_duty_cycle_limits(3), 51
e1432_get_enable(3), 162
e1432_get_error_string(3), 45
e1432_get_fifo_size(3), 165
e1432_get_fifo_size_current_max(3), 165
e1432_get_fifo_size_limits(3), 51
e1432_get_filter_freq(3), 167
e1432_get_filter_freq_limits(3), 51
e1432_get_filter_settling_time(3), 168
e1432_get_filter_settling_time_limits(3), 51
e1432_get_fwrev(3), 46
e1432_get_group_info(3), 47
e1432_get_hwconfig(3), 49
e1432_get_input_high(3), 170
e1432_get_input_low(3), 172
e1432_get_input_mode(3), 173
e1432_get_input_offset(3), 175
e1432_get_input_offset_limits(3), 51
e1432_get_internal_debug(3), 177
e1432_get_internal_debug_limits(3), 51
e1432_get_interrupt_mask(3), 179
e1432_get_interrupt_priority(3), 181
e1432_get_interrupt_priority_limits(3), 51
e1432_get_lbus_mode(3), 182
e1432_get_lbus_reset(3), 96

2 E1432

Index() Index()

e1432_get_max_order(3), 183
e1432_get_max_order_limits(3), 51
e1432_get_meas_state(3), 58
e1432_get_meas_time_length(3), 184
e1432_get_meas_time_length_limits(3), 51
e1432_get_meas_warning(3), 72
e1432_get_mmf_delay(3), 185
e1432_get_multi_sync(3), 186
e1432_get_next_arm_rpm(3), 42
e1432_get_octave_avg_mode(3), 187
e1432_get_octave_blocksize(3), 62
e1432_get_octave_hold_mode(3), 188
e1432_get_octave_int_time(3), 189
e1432_get_octave_meas(3), 190
e1432_get_octave_mode(3), 192
e1432_get_octave_start_freq(3), 193
e1432_get_octave_stop_freq(3), 193
e1432_get_octave_time_const(3), 194
e1432_get_octave_time_step(3), 195
e1432_get_overlap(3), 196
e1432_get_overlap_limits(3), 51
e1432_get_peak_decay_time(3), 197
e1432_get_peak_decay_time_limits(3), 51
e1432_get_peak_mode(3), 199
e1432_get_pre_arm_mode(3), 207
e1432_get_pre_arm_rpm(3), 209
e1432_get_pre_arm_rpm_limits(3), 51
e1432_get_ramp(3), 201
e1432_get_ramp_rate(3), 203
e1432_get_ramp_rate_limits(3), 51
e1432_get_range(3), 204
e1432_get_range_charge(3), 205
e1432_get_range_charge_limits(3), 51
e1432_get_range_limits(3), 51
e1432_get_range_mike(3), 206
e1432_get_range_mike_limits(3), 51
e1432_get_raw_tachs(3), 63
e1432_get_register_address(3), 65
e1432_get_rms_avg_time(3), 197
e1432_get_rms_avg_time_limits(3), 51
e1432_get_rms_decay_time(3), 197
e1432_get_rms_decay_time_limits(3), 51
e1432_get_rms_mode(3), 199
e1432_get_rpm_high(3), 210
e1432_get_rpm_high_limits(3), 51
e1432_get_rpm_interval(3), 211
e1432_get_rpm_interval_limits(3), 51
e1432_get_rpm_low(3), 212
e1432_get_rpm_low_limits(3), 51
e1432_get_rpm_smoothing(3), 213
e1432_get_rpm_smoothing_limits(3), 51
e1432_get_sample_mode(3), 214
e1432_get_samples_to_pre_arm(3), 66
e1432_get_scale(3), 67

E1432 3

Index() Index()

e1432_get_sine_freq(3), 216
e1432_get_sine_freq_limits(3), 51
e1432_get_sine_phase(3), 217
e1432_get_sine_phase_limits(3), 51
e1432_get_source_blocksize(3), 218
e1432_get_source_blocksize_limits(3), 51
e1432_get_source_centerfreq(3), 219
e1432_get_source_centerfreq_limits(3), 51
e1432_get_source_cola(3), 220
e1432_get_source_mode(3), 221
e1432_get_source_output(3), 224
e1432_get_source_seed(3), 226
e1432_get_source_seed_limits(3), 51
e1432_get_source_span(3), 227
e1432_get_source_span_limits(3), 51
e1432_get_source_sum(3), 229
e1432_get_span(3), 230
e1432_get_span_limits(3), 51
e1432_get_src_arbstates(3), 276
e1432_get_srcbuffer_init(3), 232
e1432_get_srcbuffer_mode(3), 232
e1432_get_srcbuffer_size(3), 232
e1432_get_srcbuffer_size_limits(3), 51
e1432_get_srcparm_mode(3), 234
e1432_get_sumbus(3), 236
e1432_get_tach_clock_freq(3), 68
e1432_get_tach_decimate(3), 237
e1432_get_tach_decimate_limits(3), 51
e1432_get_tach_delay(3), 69
e1432_get_tach_holdoff(3), 238
e1432_get_tach_holdoff_limits(3), 51
e1432_get_tach_irq_number(3), 239
e1432_get_tach_max_time(3), 240
e1432_get_tach_max_time_limits(3), 51
e1432_get_tach_ppr(3), 241
e1432_get_tach_ppr_limits(3), 51
e1432_get_trig_corr(3), 71
e1432_get_trigger_channel(3), 244
e1432_get_trigger_delay(3), 246
e1432_get_trigger_delay_limits(3), 51
e1432_get_trigger_ext(3), 247
e1432_get_trigger_level(3), 249
e1432_get_trigger_level_limits(3), 51
e1432_get_trigger_master(3), 250
e1432_get_trigger_mode(3), 251
e1432_get_trigger_slope(3), 252
e1432_get_triggers_per_arm(3), 253
e1432_get_triggers_per_arm_limits(3), 51
e1432_get_ttltrg_clock(3), 255
e1432_get_ttltrg_gclock(3), 257
e1432_get_ttltrg_lines(3), 258
e1432_get_ttltrg_satrg(3), 259
e1432_get_ttltrg_trigger(3), 261
e1432_get_warning_string(3), 75

4 E1432

Index() Index()

e1432_get_weighting(3), 269
e1432_get_window(3), 265
e1432_get_xfer_size(3), 270
e1432_get_xfer_size_limits(3), 51
e1432_get_zoom(3), 267
e1432_id(5), 283
e1432_init_io_driver(3), 76
e1432_init_measure(3), 77
e1432_init_measure_finish(3), 77
e1432_init_measure_master_finish(3), 80
e1432_init_measure_master_setup(3), 80
e1432_init_measure_slave_finish(3), 80
e1432_init_measure_slave_middle(3), 80
e1432_init_measure_slave_setup(3), 80
e1432_init_measure_to_booted(3), 77
e1432_inst(5), 285
e1432_install(3), 82
e1432_install_file(3), 84
e1432_install_file(3), 99
e1432_intr(5), 287
e1432_multimain(5), 289
e1432_octave(5), 296
e1432_octave_ctl(3), 85
e1432_parm(5), 299
e1432_pre_arm_measure(3), 86
e1432_preset(3), 87
e1432_print_errors(3), 88
e1432_read32_register(3), 93
e1432_read_float32_data(3), 89
e1432_read_float64_data(3), 89
e1432_read_i2c(3), 92
e1432_read_raw_data(3), 89
e1432_read_register(3), 93
e1432_reenable_interrupt(3), 94
e1432_reset(3), 95
e1432_reset_lbus(3), 96
e1432_reset_measure(3), 97
e1432_sca_dsp_download(3), 98
e1432_selftest(3), 99
e1432_send_tachs(3), 101
e1432_send_trigger(3), 102
e1432_set_active(3), 103
e1432_set_amp_scale(3), 105
e1432_set_analog_input(3), 106
e1432_set_anti_alias_analog(3), 108
e1432_set_anti_alias_digital(3), 109
e1432_set_append_status(3), 111
e1432_set_arm_channel(3), 115
e1432_set_arm_mode(3), 116
e1432_set_arm_time_interval(3), 118
e1432_set_auto_arm(3), 116
e1432_set_auto_group_meas(3), 119
e1432_set_auto_range_mode(3), 121
e1432_set_auto_trigger(3), 122

E1432 5

Index() Index()

e1432_set_avg_mode(3), 123
e1432_set_avg_number(3), 125
e1432_set_avg_update(3), 126
e1432_set_avg_weight(3), 127
e1432_set_blocksize(3), 128
e1432_set_cal_dac(3), 132
e1432_set_cal_voltage(3), 133
e1432_set_calc_data(3), 130
e1432_set_calin(3), 134
e1432_set_center_freq(3), 136
e1432_set_clock_freq(3), 137
e1432_set_clock_master(3), 139
e1432_set_clock_source(3), 140
e1432_set_coupling(3), 142
e1432_set_coupling_freq(3), 144
e1432_set_data_format(3), 145
e1432_set_data_mode(3), 146
e1432_set_data_port(3), 148
e1432_set_data_size(3), 151
e1432_set_decimation_bandwidth(3), 154
e1432_set_decimation_filter(3), 155
e1432_set_decimation_output(3), 156
e1432_set_decimation_oversample(3), 158
e1432_set_decimation_undersamp(3), 159
e1432_set_delta_order(3), 153
e1432_set_diag_print_level(3), 99
e1432_set_duty_cycle(3), 161
e1432_set_enable(3), 162
e1432_set_fifo_size(3), 165
e1432_set_filter_freq(3), 167
e1432_set_filter_settling_time(3), 168
e1432_set_input_high(3), 170
e1432_set_input_low(3), 172
e1432_set_input_mode(3), 173
e1432_set_input_offset(3), 175
e1432_set_interface_addr(3), 76
e1432_set_internal_debug(3), 177
e1432_set_interrupt(3), 178
e1432_set_interrupt_mask(3), 179
e1432_set_interrupt_priority(3), 181
e1432_set_lbus_mode(3), 182
e1432_set_max_order(3), 183
e1432_set_meas_time_length(3), 184
e1432_set_mmf_delay(3), 185
e1432_set_multi_sync(3), 186
e1432_set_octave_avg_mode(3), 187
e1432_set_octave_hold_mode(3), 188
e1432_set_octave_int_time(3), 189
e1432_set_octave_meas(3), 190
e1432_set_octave_mode(3), 192
e1432_set_octave_start_freq(3), 193
e1432_set_octave_stop_freq(3), 193
e1432_set_octave_time_const(3), 194
e1432_set_octave_time_step(3), 195

6 E1432

Index() Index()

e1432_set_overlap(3), 196
e1432_set_peak_decay_time(3), 197
e1432_set_peak_mode(3), 199
e1432_set_pre_arm_mode(3), 207
e1432_set_pre_arm_rpm(3), 209
e1432_set_ramp(3), 201
e1432_set_ramp_rate(3), 203
e1432_set_range(3), 204
e1432_set_range_charge(3), 205
e1432_set_range_mike(3), 206
e1432_set_rms_avg_time(3), 197
e1432_set_rms_decay_time(3), 197
e1432_set_rms_mode(3), 199
e1432_set_rpm_high(3), 210
e1432_set_rpm_interval(3), 211
e1432_set_rpm_low(3), 212
e1432_set_rpm_smoothing(3), 213
e1432_set_sample_mode(3), 214
e1432_set_sine_freq(3), 216
e1432_set_sine_phase(3), 217
e1432_set_source_blocksize(3), 218
e1432_set_source_centerfreq(3), 219
e1432_set_source_cola(3), 220
e1432_set_source_mode(3), 221
e1432_set_source_output(3), 224
e1432_set_source_seed(3), 226
e1432_set_source_span(3), 227
e1432_set_source_sum(3), 229
e1432_set_span(3), 230
e1432_set_srcbuffer_init(3), 232
e1432_set_srcbuffer_mode(3), 232
e1432_set_srcbuffer_size(3), 232
e1432_set_srcparm_mode(3), 234
e1432_set_sumbus(3), 236
e1432_set_tach_decimate(3), 237
e1432_set_tach_holdoff(3), 238
e1432_set_tach_irq_number(3), 239
e1432_set_tach_max_time(3), 240
e1432_set_tach_ppr(3), 241
e1432_set_trigger(3), 242
e1432_set_trigger_channel(3), 244
e1432_set_trigger_delay(3), 246
e1432_set_trigger_ext(3), 247
e1432_set_trigger_level(3), 249
e1432_set_trigger_master(3), 250
e1432_set_trigger_mode(3), 251
e1432_set_trigger_slope(3), 252
e1432_set_triggers_per_arm(3), 253
e1432_set_try_recover(3), 254
e1432_set_ttltrg_clock(3), 255
e1432_set_ttltrg_gclock(3), 257
e1432_set_ttltrg_lines(3), 258
e1432_set_ttltrg_satrg(3), 259
e1432_set_ttltrg_trigger(3), 261

E1432 7

Index() Index()

e1432_set_user_data(3), 263
e1432_set_user_window(3), 264
e1432_set_weighting(3), 269
e1432_set_window(3), 265
e1432_set_xfer_size(3), 270
e1432_set_zoom(3), 267
e1432_src_get_fwrev(3), 271
e1432_src_get_rev(3), 271
e1432_src_prog_romimage(3), 272
e1432_src_rxfr(3), 273
e1432_sys_info(1), 4
e1432_trace_level(3), 274
e1432_trigger_measure(3), 275
e1432_uninit_io_driver(3), 76
e1432_update_srcparm(3), 234
e1432_write32_register(3), 93
e1432_write_i2c(3), 92
e1432_write_register(3), 93
e1432_write_srcbuffer_data(3), 276
e1432mon(1), 3
e1432supp(1), 4
hostdiag(1), 5
hwblkio(1), 6
hwinstall(1), 9
hwzap(1), 11
mandb, 14
progopt(1), 13
ptman(1), 14
srcutil(1), 16

8 E1432

